You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Certain contemporary mathematical problems are of particular interest to teachers and students because their origin lies in mathematics covered in the elementary school curriculum and their development can be traced through high school, college, and university-level mathematics. This book is intended to provide a source for the mathematics (from beginning to advanced) needed to understand the emergence and evolution of five of these problems: The Four Numbers Problem, Rational Right Triangles, Lattice Point Geometry, Rational Approximation, and Dissection. Each chapter begins with the elementary geometry and number theory at the source of the problem, and proceeds (with the exception of the ...
This geometry book is written foremost for future and current middle school teachers, but is also designed for elementary and high school teachers. The book consists of ten seminars covering in a rigorous way the fundamental topics in school geometry, including all of the significant topics in high school geometry. The seminars are crafted to clarify and enhance understanding of the subject. Concepts in plane and solid geometry are carefully explained, and activities that teachers can use in their classrooms are emphasized. The book draws on the pictorial nature of geometry since that is what attracts students at every level to the subject. The book should give teachers a firm foundation on which to base their instruction in the elementary and middle grades. In addition, it should help teachers give their students a solid basis for the geometry that they will study in high school. The book is also intended to be a source for problems in geometry for enrichment programs such as Math Circles and Young Scholars. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI). Publisher's note.
Volume 2 of 2.
A co-publication of the AMS and the Mathematical Sciences Research Institute. This book, which consists of twelve interactive seminars, is a comprehensive and careful study of the fundamental topics of K–8 arithmetic. The guide aims to help teachers understand the mathematical foundations of number theory in order to strengthen and enrich their mathematics classes. Five seminars are dedicated to fractions and decimals because of their importance in the classroom curriculum. The standard topics are covered in detail, but are arranged in an order that is slightly different from the usual one. Multiplication is treated first, and with that in hand, common denominators and equivalent fractions...
This book is a translation from Russian of Part III of the book Mathematics via Problems: From Olympiads and Math Circles to Profession. Part I, Algebra, and Part II, Geometry, have been published in the same series. The main goal of this book is to develop important parts of mathematics through problems. The authors tried to put together sequences of problems that allow high school students (and some undergraduates) with strong interest in mathematics to discover such topics in combinatorics as counting, graphs, constructions and invariants in combinatorics, games and algorithms, probabilistic aspects of combinatorics, and combinatorial geometry. Definitions and/or references for material t...
It is shown that a 2-connected homotopy commutative H-space with associative mod 2 homology ring and finitely generated mod 2 cohomology ring has acyclic mod 2 cohomology. This implies that a connected, homotopy commutative, homotopy associative H-space with finitely generated mod 2 cohomology ring is mod 2 homotopy equivalent to a product of Eilenberg-MacLane spaces, giving a complete classification of such spaces localized at the prime 2.
In the last few decades, interpolation theory has become an established field with many interesting applications to classical and modern analysis. In this book, the authors develop a general theory of extrapolation spaces, which is a complement to the familiar theory of interpolation spaces. Their results allow an extension of the classical extrapolation theorem of Yano to scales of Banach spaces. They give applications to classical and modern analysis, including extreme forms of Sobolev imbedding theorems, rearranging inequalities for classical operators, and Nash-Moser implicit function theorems.
This work is concerned with a pair of dual asymptotics problems on a finite-area hyperbolic surface. The first problem is to determine the distribution of closed geodesics in the unit tangent bundle. The second problem is to determine the distribution of eigenfunctions (in microlocal sense) in the unit tangent bundle.
The historical process is constructed to be a superprocess associated with a general motion process and branching mechanism, which is enriched so as to contain information on genealogy. In other words, it is a Markov process taking values in the space of measures on the set of possible histories. Using the canonical representation for the infinitely divisible random measures which describe the process at fixed times, the authors obtain analytical and probabilistic representations for the associated Palm measures. They employ these representations to obtain results on the modulus of continuity and equilibirium structure for a class of superprocesses in Rd and to establish that super-Brownian motion in dimensions d 53 has constant density with respect to the appropriate Hausdorff measure.
Volume 2 of 2.