You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Head-Driven Phrase Structure Grammar (HPSG) is a constraint-based or declarative approach to linguistic knowledge, which analyses all descriptive levels (phonology, morphology, syntax, semantics, pragmatics) with feature value pairs, structure sharing, and relational constraints. In syntax it assumes that expressions have a single relatively simple constituent structure. This volume provides a state-of-the-art introduction to the framework. Various chapters discuss basic assumptions and formal foundations, describe the evolution of the framework, and go into the details of the main syntactic phenomena. Further chapters are devoted to non-syntactic levels of description. The book also considers related fields and research areas (gesture, sign languages, computational linguistics) and includes chapters comparing HPSG with other frameworks (Lexical Functional Grammar, Categorial Grammar, Construction Grammar, Dependency Grammar, and Minimalism).
This Handbook represents the development of research and the current level of knowledge in the fields of syntactic theory and syntax analysis. Syntax can look back to a long tradition. Especially in the last 50 years, however, the interaction between syntactic theory and syntactic analysis has led to a rapid increase in analyses and theoretical suggestions. This second edition of the Handbook on Syntax adopts a unifying perspective and therefore does not place the division of syntactic theory into several schools to the fore, but the increase in knowledge resulting from the fruitful argumentations between syntactic analysis and syntactic theory. It uses selected phenomena of individual langu...
This book constitutes the refereed proceedings of the Third International Semantic Web Conference, ISWC 2004, held in Hiroshima, Japan in November 2004. The 55 revised full papers presented together with abstracts of 2 invited talks were carefully reviewed and selected from a total of 227 submitted papers. The papers are organized in topical sections on data semantics, p2p systems, semantic Web mining, tools and methodologies for Web agents, user interfaces and visualization, large scale knowledge management, semantic Web services, inference, searching and querying, semantic Web middleware, integration and interoperability, ontologies, and industrial track.
Ruslan Mitkov's highly successful Oxford Handbook of Computational Linguistics has been substantially revised and expanded in this second edition. Alongside updated accounts of the topics covered in the first edition, it includes 17 new chapters on subjects such as semantic role-labelling, text-to-speech synthesis, translation technology, opinion mining and sentiment analysis, and the application of Natural Language Processing in educational and biomedical contexts, among many others. The volume is divided into four parts that examine, respectively: the linguistic fundamentals of computational linguistics; the methods and resources used, such as statistical modelling, machine learning, and corpus annotation; key language processing tasks including text segmentation, anaphora resolution, and speech recognition; and the major applications of Natural Language Processing, from machine translation to author profiling. The book will be an essential reference for researchers and students in computational linguistics and Natural Language Processing, as well as those working in related industries.
One of the aims of Natural Language Processing is to facilitate .the use of computers by allowing their users to communicate in natural language. There are two important aspects to person-machine communication: understanding and generating. While natural language understanding has been a major focus of research, natural language generation is a relatively new and increasingly active field of research. This book presents an overview of the state of the art in natural language generation, describing both new results and directions for new research. The principal emphasis of natural language generation is not only to facili tate the use of computers but also to develop a computational theory of...
This book constitutes the refereed proceedings of the 17th Annual Conference on Learning Theory, COLT 2004, held in Banff, Canada in July 2004. The 46 revised full papers presented were carefully reviewed and selected from a total of 113 submissions. The papers are organized in topical sections on economics and game theory, online learning, inductive inference, probabilistic models, Boolean function learning, empirical processes, MDL, generalisation, clustering and distributed learning, boosting, kernels and probabilities, kernels and kernel matrices, and open problems.
A major part of natural language processing now depends on the use of text data to build linguistic analyzers. We consider statistical, computational approaches to modeling linguistic structure. We seek to unify across many approaches and many kinds of linguistic structures. Assuming a basic understanding of natural language processing and/or machine learning, we seek to bridge the gap between the two fields. Approaches to decoding (i.e., carrying out linguistic structure prediction) and supervised and unsupervised learning of models that predict discrete structures as outputs are the focus. We also survey natural language processing problems to which these methods are being applied, and we address related topics in probabilistic inference, optimization, and experimental methodology. Table of Contents: Representations and Linguistic Data / Decoding: Making Predictions / Learning Structure from Annotated Data / Learning Structure from Incomplete Data / Beyond Decoding: Inference
This comprehensive reference work provides an overview of the concepts, methodologies, and applications in computational linguistics and natural language processing (NLP). Features contributions by the top researchers in the field, reflecting the work that is driving the discipline forward Includes an introduction to the major theoretical issues in these fields, as well as the central engineering applications that the work has produced Presents the major developments in an accessible way, explaining the close connection between scientific understanding of the computational properties of natural language and the creation of effective language technologies Serves as an invaluable state-of-the-art reference source for computational linguists and software engineers developing NLP applications in industrial research and development labs of software companies
This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introd...
This book constitutes the thoroughly refereed proceedings of the Second International Joint Conference on Natural Language Processing, IJCNLP 2005, held in Jeju Island, Korea in October 2005. The 88 revised full papers presented in this volume were carefully reviewed and selected from 289 submissions. The papers are organized in topical sections on information retrieval, corpus-based parsing, Web mining, rule-based parsing, disambiguation, text mining, document analysis, ontology and thesaurus, relation extraction, text classification, transliteration, machine translation, question answering, morphological analysis, text summarization, named entity recognition, linguistic resources and tools, discourse analysis, semantic analysis NLP applications, tagging, language models, spoken language, and terminology mining.