You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoît Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry and various aspects of dynamical systems in applied mathematics and the applications to other sciences. Also included are articles discussing a variety of connections between these sub...
This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.
This volume contains the proceedings of the 2016 Summer School on Fractal Geometry and Complex Dimensions, in celebration of Michel L. Lapidus's 60th birthday, held from June 21–29, 2016, at California Polytechnic State University, San Luis Obispo, California. The theme of the contributions is fractals and dynamics and content is split into four parts, centered around the following themes: Dimension gaps and the mass transfer principle, fractal strings and complex dimensions, Laplacians on fractal domains and SDEs with fractal noise, and aperiodic order (Delone sets and tilings).
This volume considers resistance networks: large graphs which are connected, undirected, and weighted. Such networks provide a discrete model for physical processes in inhomogeneous media, including heat flow through perforated or porous media. These graphs also arise in data science, e.g., considering geometrizations of datasets, statistical inference, or the propagation of memes through social networks. Indeed, network analysis plays a crucial role in many other areas of data science and engineering. In these models, the weights on the edges may be understood as conductances, or as a measure of similarity. Resistance networks also arise in probability, as they correspond to a broad class o...
Differential Equations on Fractals opens the door to understanding the recently developed area of analysis on fractals, focusing on the construction of a Laplacian on the Sierpinski gasket and related fractals. Written in a lively and informal style, with lots of intriguing exercises on all levels of difficulty, the book is accessible to advanced undergraduates, graduate students, and mathematicians who seek an understanding of analysis on fractals. Robert Strichartz takes the reader to the frontiers of research, starting with carefully motivated examples and constructions. One of the great accomplishments of geometric analysis in the nineteenth and twentieth centuries was the development of...
This volume is intended for the advanced study of several topics in mathematical statistics. The first part of the book is devoted to sampling theory (from one-dimensional and multidimensional distributions), asymptotic properties of sampling, parameter estimation, sufficient statistics, and statistical estimates. The second part is devoted to hypothesis testing and includes the discussion of families of statistical hypotheses that can be asymptotically distinguished. In particular,the author describes goodness-of-fit and sequential statistical criteria (Kolmogorov, Pearson, Smirnov, and Wald) and studies their main properties. The book is suitable for graduate students and researchers interested in mathematical statistics. It is useful for independent study or supplementaryreading.
The author develops a rigorous second order analysis on the space of probability measures on a Riemannian manifold endowed with the quadratic optimal transport distance $W_2$. The discussion includes: definition of covariant derivative, discussion of the problem of existence of parallel transport, calculus of the Riemannian curvature tensor, differentiability of the exponential map and existence of Jacobi fields. This approach does not require any smoothness assumption on the measures considered.
The authors construct new families of smooth admissible $\overline{\mathbb{F}}_p$-representations of $\mathrm{GL}_2(F)$, where $F$ is a finite extension of $\mathbb{Q}_p$. When $F$ is unramified, these representations have the $\mathrm{GL}_2({\mathcal O}_F)$-socle predicted by the recent generalizations of Serre's modularity conjecture. The authors' motivation is a hypothetical mod $p$ Langlands correspondence.
The areas of Ramsey theory and random graphs have been closely linked ever since Erdős's famous proof in 1947 that the “diagonal” Ramsey numbers R(k) grow exponentially in k. In the early 1990s, the triangle-free process was introduced as a model which might potentially provide good lower bounds for the “off-diagonal” Ramsey numbers R(3,k). In this model, edges of Kn are introduced one-by-one at random and added to the graph if they do not create a triangle; the resulting final (random) graph is denoted Gn,△. In 2009, Bohman succeeded in following this process for a positive fraction of its duration, and thus obtained a second proof of Kim's celebrated result that R(3,k)=Θ(k2/logk). In this paper the authors improve the results of both Bohman and Kim and follow the triangle-free process all the way to its asymptotic end.
A textbook for graduate and undergraduate students introducing the classical theory of prehomogeneous vector spaces originated by Mikio Sato in 1961. The original Gaikinshitsu bekutoru kukan was published by Iwanami Shotan, Tokyo, in 1998. The English, translated by M. Nagura and T. Niitani, contains some additional material. Annotation copyrighted by Book News, Inc., Portland, OR