You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book focuses on the fundamental principles and latest research findings in hydrogen energy fields including: hydrogen production, hydrogen storage, fuel cells, hydrogen safety, economics, and the impact on society. Further, the book introduces the latest development trends in practical applications, especially in commercial household fuel cells and commercial fuel cell vehicles in Japan. This book not only helps readers to further their basic knowledge, but also presents the state of the art of hydrogen-energy-related research and development. This work serves as an excellent reference for beginners such as graduate students, as well as a handbook and systematic summary of entire hydrogen-energy systems for scientists and engineers.
This book contains the proceedings of the Second International Conference on Integrated Sciences and Technologies (IMDC-IST-2021). Where held on 7th–9th Sep 2021 in Sakarya, Turkey. This conference was organized by University of Bradford, UK and Southern Technical University, Iraq. The papers in this conference were collected in a proceedings book entitled: Proceedings of the second edition of the International Multi-Disciplinary Conference Theme: “Integrated Sciences and Technologies” (IMDC-IST-2021). The presentation of such a multi-discipline conference provides a lot of exciting insights and new understanding on recent issues in terms of Green Energy, Digital Health, Blended Learni...
Research and commercial activity in developing hydrogen as a fuel is driving increased attention on hydrogen-materials interactions. In particular, a renewed and intensifying interest in developing hydrogen fuel cells has prompted extensive research with the objective to enable the safe design of components for transporting and storing hydrogen fuel. This volume is the proceedings from the premier conference on hydrogen effects in materials, bridging scientific research and engineering applications. The proceedings volume highlights several themes: the technological importance of hydrogen effects on structural materials; the impact of bridging science and engineering; and the opportunity to apply new research tools, including simulation techniques as well as experimental methods.
Hydrogen Gas Embrittlement: Mechanisms, Mechanics, and Design enables readers to understand complicated hydrogen-material interactions and conduct better material selection and strength design for hydrogen components. The book reviews the fundamental mechanisms of hydrogen embrittlement, the various behaviors of hydrogen in metallic materials such as diffusion, solution, and trapping, and emphasizes the necessary properties for effective strength design of various materials under the influence of hydrogen, including tensile properties, fatigue life, fatigue limit, fatigue crack-growth, and fracture toughness. Sections provide experimental data obtained in hydrogen gas at various pressures an...
Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.Volume 1 is divided into three parts, the first of which provides an overview of the hydrogen embrittlement problem in specific technologies including petrochemical refining, automotive hydrogen tanks, nuclear waste disposal and power sys...
This book is the second edition of the one originally published in 2016, as the first comprehensive treatment on the fundamentals of hydrogen embrittlement of metallic materials, mainly steel. The book provides students and researchers engaging in hydrogen problems with a unified view of the subject. Establishing reliable principles for materials design against hydrogen embrittlement and assessing their performance are recent urgent industrial needs in developing high-strength steel for hydrogen energy equipment and weight-reducing vehicles. The interdisciplinary nature of the subject, covering metal physics, materials science, and mechanics of fracture, has disturbed a profound understandin...
Metal fatigue is an essential consideration for engineers and researchers looking at factors that cause metals to fail through stress, corrosion, or other processes. Predicting the influence of small defects and non-metallic inclusions on fatigue with any degree of accuracy is a particularly complex part of this. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions is the most trusted, detailed and comprehensive guide to this subject available. This expanded second edition introduces highly important emerging topics on metal fatigue, pointing the way for further research and innovation. The methodology is based on important and reliable results and may be usefully applied to other fatigue problems not directly treated in this book. - Demonstrates how to solve a wide range of specialized metal fatigue problems relating to small defects and non-metallic inclusions. - Provides a detailed introduction to fatigue mechanisms and stress concentration. - This edition is expanded to address even more topics, including low cycle fatigue, quality control of fatigue components, and more.