You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The topic of the CVIII session of Les Houches School, held in July 2017, was Effective Field Theory (EFT). The goal of this school was to offer a broad introduction to the foundations and modern applications of Effective Field Theory in many of its incarnations.
The Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI) was founded at Nagoya University in 2010 under the directorship of T Maskawa, in celebration of the 2008 Nobel Prize in Physics for M Kobayashi and T Maskawa, both who are alumni of Nagoya University. In commemoration of the new KMI building in 2011, the KMI Inauguration Conference (KMIIN) was organized to discuss perspectives of various fields OCo both theoretical and experimental studies of particle physics and astrophysics OCo as the main objectives of the KMI activity.This proceedings contains a welcome address by T Maskawa conveying his hopes for KMI to create new revolutionary directions in the spirit of...
This volume contains contributions which are largely focused on strong coupling gauge theories and the search of theories beyond the standard model, as well as new aspects in hot and dense QCD — particularly in view of the LHC experiments and the lattice studies of conformal fixed point.It contains, among others, many of the latest and important reports on walking technicolor and related subjects in the general context of conformality, discussions of phenomenological implications with the LHC, as well as the theoretical ones through lattice studies. Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively elaborated in close relation to phenomenological studies. Also, heavy ion experiments at LHC are discussed in such nonperturbative approaches.
The discovery of neutrino oscillations in 1998 initiated efforts to form a group to work on the detailed study of the phenomenon; this study is now supported by a grant-in-aid in the specific field of neutrinos from the Japanese Ministry of Education, Culture and Sports. The aim of this working group is to put together the efforts from various fields necessary for understanding neutrino oscillations in detail from both the experimental and the theoretical point of view. The 4th International Workshop on Neutrino Oscillations and Their Origin was held to discuss recent progress in both experimental and theoretical study.
Contents: Status and Future Prospects of Reactor Neutrinos, Solar Neutrinos, and Supernova Neutrinos; Status and Future Prospects of Long Baseline Neutrino Experiments, Atmospheric Neutrinos; Dark Matter Searches and Double Beta Decays; Lepton Number Violated Muon Decays; Proton Decay Searches; Neutrino Phenomenology and Model Building.
This book offers construction of a renormalizable effective theory of electroweak-interacting spin-1 dark matter (DM). The effective theory realizes minimal but essential features of DM predicted in extra-dimension models, and enables to systematically treat non-perturbative corrections such as the Sommerfeld effects. Deriving an annihilation cross section including the Sommerfeld effects based on the effective theory, the author discusses the future sensitivity of observations to gamma-ray from the Galactic Center. As a result, the author explains the monochromatic gamma-ray signatures originate from two photons (γγ) or photon and Z boson (γZ) produced in the process of DM annihilations, and concludes a possible scenario that unstable neutral spin-1 particles (Z’) appear and results in a spectral peak in addition to the one caused by γγ and γZ channels in gamma-ray observations. If those two spectral peaks are observed, the masses of spin-1 DM and Z’ would be reconstructed.
This volume presents the possibility of high intensity muon sources whose intensity would be at least 104 higher than that available now. Scientific opportunities anticipated with such sources are search for muon lepton flavor violation, measurements of the muon anomalous magnetic moment and the electric dipole moment, neutrino factories based on a muon storage ring, muon collider and muon applied science such as muon catalyzed fusion and biology. In addition to physics opportunities, the necessary technology for such sources is discussed.
Contents:Solar Neutrinos:The Latest Solar Neutrino Results in Super-Kamiokande (Y Koshio)Weak Current in Deuterium (T Sato)Solar Neutrino Phenomenology and Future:Solar Neutrino Oscillations (M C Gonzalez-Garcia)The Status of Resonant Spin Flavor Precession (C S Lim)Atmospheric Neutrinos:Status of the Atmospheric Neutrino Studies (M D Messier)Cosmic Ray Measurements for Atmospheric Neutrino with BESS-TeV (K Abe)Oscillation Phenomenology I:Calculations of the Atmospheric ν Fluxes (P Lipari)Three-Flavor Analysis of Atmospheric and Solar Neutrinos (A Marrone)Absolute Neutrino Mass:Neutrinoless Double Beta Decay and Neutrino Oscillations (H V Klapdor-Kleingrothaus)Accelerator Neutrinos, CPV:The...
The scientific program of these important proceedings was arranged to cover most of the field of neutrino physics. In light of the rapid growth of interest stimulated by new interesting results from the field, more than half of the papers presented here are related to the neutrino mass and oscillations, including atmospheric and solar neutrino studies. Neutrino mass and oscillations could imply the existence of a mass scale many orders of magnitudes higher than presented in current physics and will probably guide scientists beyond the standard model of particle physics.