You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the ICTS program Knot Theory and Its Applications (KTH-2013), held from December 10–20, 2013, at IISER Mohali, India. The meeting focused on the broad area of knot theory and its interaction with other disciplines of theoretical science. The program was divided into two parts. The first part was a week-long advanced school which consisted of minicourses. The second part was a discussion meeting that was meant to connect the school to the modern research areas. This volume consists of lecture notes on the topics of the advanced school, as well as surveys and research papers on current topics that connect the lecture notes with cutting-edge research in the broad area of knot theory.
This volume contains the proceedings of the AMS Special Session on Algebraic and Combinatorial Structures in Knot Theory and the AMS Special Session on Spatial Graphs, both held from October 24–25, 2015, at California State University, Fullerton, CA. Included in this volume are articles that draw on techniques from geometry and algebra to address topological problems about knot theory and spatial graph theory, and their combinatorial generalizations to equivalence classes of diagrams that are preserved under a set of Reidemeister-type moves. The interconnections of these areas and their connections within the broader field of topology are illustrated by articles about knots and links in spatial graphs and symmetries of spatial graphs in and other 3-manifolds.
On Knots is a journey through the theory of knots, starting from the simplest combinatorial ideas--ideas arising from the representation of weaving patterns. From this beginning, topological invariants are constructed directly: first linking numbers, then the Conway polynomial and skein theory. This paves the way for later discussion of the recently discovered Jones and generalized polynomials. The central chapter, Chapter Six, is a miscellany of topics and recreations. Here the reader will find the quaternions and the belt trick, a devilish rope trick, Alhambra mosaics, Fibonacci trees, the topology of DNA, and the author's geometric interpretation of the generalized Jones Polynomial. Then come branched covering spaces, the Alexander polynomial, signature theorems, the work of Casson and Gordon on slice knots, and a chapter on knots and algebraic singularities.The book concludes with an appendix about generalized polynomials.
In this book, experts in different fields of mathematics, physics, chemistry and biology present unique forms of knots which satisfy certain preassigned criteria relevant to a given field. They discuss the shapes of knotted magnetic flux lines, the forms of knotted arrangements of bistable chemical systems, the trajectories of knotted solitons, and the shapes of knots which can be tied using the shortest piece of elastic rope with a constant diameter.
The principal results of this paper involve the extension of the time-dependent Born-Oppenheimer approximation to accommodate the propagation of nuclei through generic, minimal multiplicity electron energy level crossings. The Born-Oppenheimer approximation breaks down at electron energy level crossings, which are prevalent in molecular systems. We classify generic, minimal multiplicity level crossings and derives a normal form for the electron Hamiltonian near each type of crossing. We then extend the time-dependent Born-Oppenheimer approximation to accommodate the propagation of nuclei through each type of electron energy level crossing.
The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.
The technique of diagrammatic morphisms is an important ingredient in comprehending and visualizing certain types of categories with structure. It was widely used in this capacity in many areas of algebra, low-dimensional topology and physics. It was also applied to problems in classical and quantum information processing and logic. This volume contains articles based on talks at the Special Session, ``Diagrammatic Morphisms in Algebra, Category Theory, and Topology'', at the AMS Sectional Meeting in San Francisco. The articles describe recent achievements in several aspects of diagrammatic morphisms and their applications. Some of them contain detailed expositions on various diagrammatic techniques. The introductory article by D. Yetter is a thorough account of the subject in a historical perspective.
More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.
The philosophy of the first part of this work is to understand (and classify) Kummer surfaces by studying (16, 6) configurations. Chapter 1 is devoted to classifying (16, 6) configurations and studying their manifold symmetries and the underlying questions about finite subgroups of [italic capitals]PGL4([italic]k). In chapter 2 we use this information to give a complete classification of Kummer surfaces together with explicit equations and the explicit description of their singularities.