You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Extrusive Bacterial Ectosymbiosis of Ciliates.
Sulfur is the tenth most abundant element in the universe and the sixth most abundant element in microbial biomass. By virtue of its chemical properties, particularly the wide range of stable redox states, sulfur plays a critical role in central biochemistry as a structural element, redox center, and carbon carrier. In addition, redox reactions involving reduced and oxidized inorganic sulfur compounds can be utilized by microbes for the generation and conservation of biochemical energy. Microbial transformation of both inorganic and organic sulfur compounds has had a profound effect on the properties of the biosphere and continues to affect geochemistry today. For these reasons, we present here a collection of articles from the leading edge of the field of sulfur microbiology, focusing on reactions and compounds of geochemical significance.
Symbiosis is the fourth volume in the series Cellular Origin and Life in Extreme Habitats (COLE). Fifty experts, from over a dozen countries, review their current studies on different approaches to these phenomena. The chapters present various aspects of symbiosis from gene transfer, morphological features, and biodiversity to individual organisms sharing mutual cellular habitats. The origin of the eukaryotic phase is discussed with emphasis on cyanelles, H syntrophy, N2 fixation, and S-based symbiosis (as well as the origin of mitochondrion, chloroplast, and nucleus). All members of the three domains of life are presented for sharing symbiotic associations. This volume brings the concept of living together as `One plus One (plus One) equals One.' The purpose of this book is to introduce the teacher, researcher, scholar, and student as well as the open-minded and science-oriented reader to the global importance of this association.
This is the third volume of Advances in Microbial Ecology to be produced by the current editorial board. I would, therefore, like to take this opportunity to thank my co-editors for all their efforts, particularly in maintaining a balance of subject matter and geographical distribution of the contributions. Volume 15 is no exception in that we have a balance between the prokaryo tic and eukaryotic organisms and a range of subject matter from applied ecology through process ecology to ecological theory. The response from our readers has been encouraging in the sense that the breadth of coverage is much appreciated, particularly by teachers and postgraduate/postdoctoral researchers. However, w...
The revised Third Edition of The Prokaryotes, acclaimed as a classic reference in the field, offers new and updated articles by experts from around the world on taxa of relevance to medicine, ecology and industry. Entries combine phylogenetic and systematic data with insights into genetics, physiology and application. Existing entries have been revised to incorporate rapid progress and technological innovation. The new edition improves on the lucid presentation, logical layout and abundance of illustrations that readers rely on, adding color illustration throughout. Expanded to seven volumes in its print form, the new edition adds a new, searchable online version.
This book describes the state-of-the-art concerning the ‘marine microbiome’ and its uses in biotechnology. The first part discusses the diversity and ecology of marine microorganisms and viruses, including all three domains of life: Bacteria, Archaea, and Eukarya. It discusses whether marine microorganisms exist and, if so, why they might be unique. The second part presents selected marine habitats, their inhabitants and how they influence biogeochemical cycles, while the third discusses the utilization of marine microbial resources, including legal aspects, dissemination, and public awareness. The marine microbiome is the total of microorganisms and viruses in the ocean and seas and in any connected environment, including the seafloor and marine animals and plants. The diversity of microbial life remains unquantified and largely unknown, and could represent a hidden treasure for human society. Accordingly, this book is also intended to connect academics and industry, providing essential information for microbiologists from both fields.
What is life? Where do we come from and how did we evolve? What is the universe and how was it formed? What is the nature of the material world? How does it work? How and why do we think? What does it mean to be human? How do we know? There are many different versions of our creation story. This book tells the version according to modern science. It is a unique account, starting at the Big Bang and travelling right up to the emergence of humans as conscious intelligent beings, 13.8 billion years later. Chapter by chapter, it sets out the current state of scientific knowledge: the origins of space and time; energy, mass, and light; galaxies, stars, and our sun; the habitable earth, and complex life itself. Drawing together the physical and biological sciences, Baggott recounts what we currently know of our history, highlighting the questions science has yet to answer.
New possibilities have been brought about by the stunning number of genomic sequences becoming available for photosynthetic organisms. This new world of whole genome sequence data spans the phyla from photosynthetic microbes to algae to higher plants. These whole genome projects are intrinsically interesting, but also inform the variety of other molecular sequence databases including the recent 'meta-genomic' sequencing efforts that analyze entire communities of organisms. As impressive as they are, are obviously only the beginning of the effort to decipher the biological meaning encoded within them. This book aims to highlight progress in this direction. This book aims toward a genome-level...
Sulfur is one of the most versatile elements in life. This book provides, for the first time, in-depth and integrated coverage of the functions of sulfur in phototrophic organisms including bacteria, plants and algae. It bridges gaps between biochemistry and cellular biology of sulfur in these organisms, and of biology and environments dominated by them. The book therefore provides a comprehensive overview of plant sulfur relations from genome to environment.