You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This work proposes a probabilistic extension to Bézier curves as a basis for effectively modeling stochastic processes with a bounded index set. The proposed stochastic process model is based on Mixture Density Networks and Bézier curves with Gaussian random variables as control points. A key advantage of this model is given by the ability to generate multi-mode predictions in a single inference step, thus avoiding the need for Monte Carlo simulation.
In dieser Arbeit wird ein Ansatz entwickelt, um eine automatische Anpassung des Verhaltens von Produktionsanlagen an wechselnde Aufträge und Rahmenbedingungen zu erreichen. Dabei kommt das Prinzip der Selbstorganisation durch verteilte Planung zum Einsatz. - Most production processes are rigid not only by way of the physical layout of machines and their integration, but also by the custom programming of the control logic for the integration of components to a production systems. Changes are time- and resource-expensive. This makes the production of small lot sizes of customized products economically challenging. This work develops solutions for the automated adaptation of production systems based on self-organisation and distributed planning.
The availability of video data is an opportunity and a challenge for law enforcement agencies. Face recognition methods can play a key role in the automated search for persons in the data. This work targets efficient representations of low-quality face sequences to enable fast and accurate face search. Novel concepts for multi-scale analysis, dataset augmentation, CNN loss function, and sequence description lead to improvements over state-of-the-art methods on surveillance video footage.
"This work proposes a Multibody Structure from Motion (MSfM) algorithm for moving object reconstruction that incorporates instance-aware semantic segmentation and multiple view geometry methods. The MSfM pipeline tracks two-dimensional object shapes on pixel level to determine object specific feature correspondences, in order to reconstruct 3D object shapes as well as 3D object motion trajectories" -- Publicaciones de Arquitectura y Arte.
This book proposes a novel deep learning based detection method, focusing on vehicle detection in aerial imagery recorded in top view. The base detection framework is extended by two novel components to improve the detection accuracy by enhancing the contextual and semantical content of the employed feature representation. To reduce the inference time, a lightweight CNN architecture is proposed as base architecture and a novel module that restricts the search area is introduced.
The understanding and interpretation of complex 3D environments is a key challenge of autonomous driving. Lidar sensors and their recorded point clouds are particularly interesting for this challenge since they provide accurate 3D information about the environment. This work presents a multimodal approach based on deep learning for panoptic segmentation of 3D point clouds. It builds upon and combines the three key aspects multi view architecture, temporal feature fusion, and deep sensor fusion.
This work proposes a feature-based probabilistic data association and tracking approach (FBPDATA) for multi-object tracking. FBPDATA is based on re-identification and tracking of individual video image points (feature points) and aims at solving the problems of partial, split (fragmented), bloated or missed detections, which are due to sensory or algorithmic restrictions, limited field of view of the sensors, as well as occlusion situations.
This book proposes to solve the low-resolution (LR) facial analysis problem with 3D face super-resolution (FSR). A complete processing chain is presented towards effective 3D FSR in real world. To deal with the extreme challenges of incorporating 3D modeling under the ill-posed LR condition, a novel workflow coupling automatic localization of 2D facial feature points and 3D shape reconstruction is developed, leading to a robust pipeline for pose-invariant hallucination of the 3D facial texture.
Deep learning excels at extracting complex patterns but faces catastrophic forgetting when fine-tuned on new data. This book investigates how class- and domain-incremental learning affect neural networks for automated driving, identifying semantic shifts and feature changes as key factors. Tools for quantitatively measuring forgetting are selected and used to show how strategies like image augmentation, pretraining, and architectural adaptations mitigate catastrophic forgetting.