You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the refereed proceedings of the 4th International Conference on Artificial General Intelligence, AGI 2011, held in Mountain View, CA, USA, in August 2011. The 28 revised full papers and 26 short papers were carefully reviewed and selected from 103 submissions. The papers are written by leading academic and industry researchers involved in scientific and engineering work and focus on the creation of AI systems possessing general intelligence at the human level and beyond.
Deep reinforcement learning has attracted considerable attention recently. Impressive results have been achieved in such diverse fields as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to understand problems that were previously considered to be very difficult. In the game of Go, the program AlphaGo has even learned to outmatch three of the world’s leading players.Deep reinforcement learning takes its inspiration from the fields of biology and psychology. Biology has inspired the creation of artificial neural networks and deep learning, while psychology studies how animals and humans learn, and how sub...
What Is Long Short Term Memory Long short-term memory, often known as LSTM, is a type of artificial neural network that is utilized in the domains of deep learning and artificial intelligence. LSTM neural networks have feedback connections, in contrast to more traditional feedforward neural networks. This type of recurrent neural network, commonly known as an RNN, is capable of processing not only individual data points but also complete data sequences. Because of this property, LSTM networks are particularly well-suited for the processing and forecasting of data. For instance, LSTM can be used to perform tasks such as connected unsegmented handwriting identification, speech recognition, mac...
Personal motivation. The dream of creating artificial devices that reach or outperform human inteUigence is an old one. It is also one of the dreams of my youth, which have never left me. What makes this challenge so interesting? A solution would have enormous implications on our society, and there are reasons to believe that the AI problem can be solved in my expected lifetime. So, it's worth sticking to it for a lifetime, even if it takes 30 years or so to reap the benefits. The AI problem. The science of artificial intelligence (AI) may be defined as the construction of intelligent systems and their analysis. A natural definition of a system is anything that has an input and an output str...
Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete examples, minimal theory, and production-ready Python frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurélien Géron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and ...
This book covers recent advances in artificial intelligence, smart computing, and their applications in augmenting medical and health care systems. It will serve as an ideal reference text for graduate students and academic researchers in diverse engineering fields including electrical, electronics and communication, computer, and biomedical. This book: Presents architecture, characteristics, and applications of artificial intelligence and smart computing in health care systems Highlights privacy issues faced in health care and health informatics using artificial intelligence and smart computing technologies Discusses nature-inspired computing algorithms for the brain-computer interface Cove...
Intelligent Environments (IEs) aim to empower users by enriching their experience, raising their awareness and enhancing their management of their surroundings. The term IE is used to describe the physical spaces where ICT and pervasive technologies are used to achieve specific objectives for the user and/or the environment. The growing IE community, from academia to practitioners, is working on the materialization of IEs driven by the latest technological developments and innovative ideas. This book presents the proceedings of the workshops held in conjunction with the 15th International Conference on Intelligent Environments (IE’19), Rabat, Morocco, 24 – 27 June 2019. The conference fo...
Most people need textual or visual interfaces to help them make sense of Semantic Web data. In this book, the author investigates the problems associated with generating natural language summaries for structured data encoded as triples using deep neural networks. An end-to-end trainable architecture is proposed, which encodes the information from a set of knowledge graph triples into a vector of fixed dimensionality, and generates a textual summary by conditioning the output on this encoded vector. Different methodologies for building the required data-to-text corpora are explored to train and evaluate the performance of the approach. Attention is first focused on generating biographies, and...
Algorithmic probability and friends: Proceedings of the Ray Solomonoff 85th memorial conference is a collection of original work and surveys. The Solomonoff 85th memorial conference was held at Monash University's Clayton campus in Melbourne, Australia as a tribute to pioneer, Ray Solomonoff (1926-2009), honouring his various pioneering works - most particularly, his revolutionary insight in the early 1960s that the universality of Universal Turing Machines (UTMs) could be used for universal Bayesian prediction and artificial intelligence (machine learning). This work continues to increasingly influence and under-pin statistics, econometrics, machine learning, data mining, inductive inferenc...
Ruslan Mitkov's highly successful Oxford Handbook of Computational Linguistics has been substantially revised and expanded in this second edition. Alongside updated accounts of the topics covered in the first edition, it includes 17 new chapters on subjects such as semantic role-labelling, text-to-speech synthesis, translation technology, opinion mining and sentiment analysis, and the application of Natural Language Processing in educational and biomedical contexts, among many others. The volume is divided into four parts that examine, respectively: the linguistic fundamentals of computational linguistics; the methods and resources used, such as statistical modelling, machine learning, and corpus annotation; key language processing tasks including text segmentation, anaphora resolution, and speech recognition; and the major applications of Natural Language Processing, from machine translation to author profiling. The book will be an essential reference for researchers and students in computational linguistics and Natural Language Processing, as well as those working in related industries.