You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Rainfall-Runoff Modelling: The Primer, Second Edition is the follow-up of this popular and authoritative text, first published in 2001. The book provides both a primer for the novice and detailed descriptions of techniques for more advanced practitioners, covering rainfall-runoff models and their practical applications. This new edition extends these aims to include additional chapters dealing with prediction in ungauged basins, predicting residence time distributions, predicting the impacts of change and the next generation of hydrological models. Giving a comprehensive summary of available techniques based on established practices and recent research the book offers a thorough and accessib...
The discipline of Integrated Environmental Modelling (IEM) has developed in order to solve complex environmental problems, for example understanding the impacts of climate change on the physical environment. IEM provides methods to fuse or link models together, this in turn requires facilities to make models discoverable and also to make the outputs of modelling easily visualized. The vision and challenges for IEM going forward are summarized by leading proponents. Several case studies describe the application of model fusion to a range of real-world problems including integrating groundwater and recharge models within the UK Environment Agency, and the development of ‘catastrophe’ models to predict better the impact of natural hazards. Communicating modelling results to end users who are often not specialist modellers is also an emerging area of research addressed within the volume. Also included are papers that highlight current developments of the technology platforms underpinning model fusion.
General circulation models (GCMs) predict certain changes in the amounts and distribution of precipitation, but the conversion of these predictions of impacts on water resources presents novel problems in hydrologic modeling, particularly with regard to the scale of the processes involved. Therefore improved, distributed GCMs are required. New remote sensing technologies provide the necessary spatially distributed data. However, there are many attendant problems with the translation of remotely sensed signals into hydrologically relevant information. This book elucidates how to improve the representation of land surface hydrologic processes in GCMs and in regional and global scale climate studies. It is divided into five sections: Models and Data; Precipitation; Soil Moisture; Evapotranspiration; Runoff.
Published by the American Geophysical Union as part of the Water Science and Application Series, Volume 6. During the past four decades, computer-based mathematical models of watershed hydrology have been widely used for a variety of applications including hydrologic forecasting, hydrologic design, and water resources management. These models are based on general mathematical descriptions of the watershed processes that transform natural forcing (e.g., rainfall over the landscape) into response (e.g., runoff in the rivers). The user of a watershed hydrology model must specify the model parameters before the model is able to properly simulate the watershed behavior.
Approaches to avoid loss of life and limit disruption and damage from flooding have changed significantly in recent years. Worldwide, there has been a move from a strategy of flood defence to one of flood risk management. Flood risk management includes flood prevention using hard defences, where appropriate, but also requires that society learns to live with floods and that stakeholders living in flood prone areas develop coping strategies to increase their resilience to flood impacts when these occur. This change in approach represents a paradigm shift which stems from the realisation that continuing to strengthen and extend conventional flood defences is unsustainable economically, environ...
Modeling of the rainfall-runoff process is of both scientific and practical significance. Many of the currently used mathematical models of hydrologic systems were developed a genera tion ago. Much of the effort since then has focused on refining these models rather than on developing new models based on improved scientific understanding. In the past few years, however, a renewed effort has been made to improve both our fundamental understanding of hydrologic processes and to exploit technological advances in computing and remote sensing. It is against this background that the NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems was organized. The idea for h...
Uniquely outlines CFD theory in a manner relevant to environmental applications. This book addresses the basic topics in CFD modelling in a thematic manner to provided the necessary theoretical background, as well as providing global cases studies showing how CFD models can be used in practice demonstrating how good practice can be achieved , with reference to both established and new applications. First book to apply CFD to the environmental sciences Written at a level suitable for non-mathematicians
Forests, Water and People in the Humid Tropics is a comprehensive review of the hydrological and physiological functioning of tropical rain forests, the environmental impacts of their disturbance and conversion to other land uses, and optimum strategies for managing them. The book brings together leading specialists in such diverse fields as tropical anthropology and human geography, environmental economics, climatology and meteorology, hydrology, geomorphology, plant and aquatic ecology, forestry and conservation agronomy. The editors have supplemented the individual contributions with invaluable overviews of the main sections and provide key pointers for future research. Specialists will find authenticated detail in chapters written by experts on a whole range of people-water-land use issues, managers and practitioners will learn more about the implications of ongoing and planned forest conversion, while scientists and students will appreciate a unique review of the literature.
Assessment of risk and uncertainty is crucial for natural hazard risk management, facilitating risk communication and informing strategies to successfully mitigate our society's vulnerability to natural disasters. Written by some of the world's leading experts, this book provides a state-of-the-art overview of risk and uncertainty assessment in natural hazards. It presents the core statistical concepts using clearly defined terminology applicable across all types of natural hazards and addresses the full range of sources of uncertainty, the role of expert judgement and the practice of uncertainty elicitation. The core of the book provides detailed coverage of all the main hazard types and concluding chapters address the wider societal context of risk management. This is an invaluable compendium for academic researchers and professionals working in the fields of natural hazards science, risk assessment and management and environmental science, and will be of interest to anyone involved in natural hazards policy.