You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
1 “Change is inevitable.” Embracing this quote we have tried to carefully exp- iment with the format of this conference, the 15th International Conference on Inductive Logic Programming, hopefully making it even better than it already was. But it will be up to you, the inquisitive reader of this book, to judge our success. The major changes comprised broadening the scope of the conference to include more diverse forms of non-propositional learning, to once again have tutorials on exciting new areas, and, for the ?rst time, to also have a discovery challenge as a platform for collaborative work. This year the conference was co-located with ICML 2005, the 22nd Inter- tional Conference on M...
This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.
Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical ?elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the ?eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (correspond...
The Twelfth International Conference on Inductive Logic Programming was held in Sydney, Australia, July 9–11, 2002. The conference was colocated with two other events, the Nineteenth International Conference on Machine Learning (ICML2002) and the Fifteenth Annual Conference on Computational Learning Theory (COLT2002). Startedin1991,InductiveLogicProgrammingistheleadingannualforumfor researchers working in Inductive Logic Programming and Relational Learning. Continuing a series of international conferences devoted to Inductive Logic Programming and Relational Learning, ILP 2002 was the central event in 2002 for researchers interested in learning relational knowledge from examples. The Progr...
This book constitutes the refereed proceedings of the 11th International Conference on Inductive Logic Programming, ILP 2001, held in Strasbourg, France in September 2001. The 21 revised full papers presented were carefully reviewed and selected from 37 submissions. Among the topics addressed are data mining issues for multi-relational databases, supervised learning, inductive inference, Bayesian reasoning, learning refinement operators, neural network learning, constraint satisfaction, genetic algorithms, statistical machine learning, transductive inference, etc.
This book constitutes the refereed proceedings of the 14th International Conference on Inductive Logic Programming, ILP 2004, held in Porto, Portugal, in September 2004. The 20 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers address all current topics in inductive logic programming, ranging from theoretical and methodological issues to advanced applications in various areas.
This book presents the latest advances in ultrafast science, including ultrafast laser and measurement technology, and studies of ultrafast phenomena. It summarizes the results presented at the 12th Ultrafast Phenomena Conference and reviews the state of the art of this important and rapidly advancing field.
The question, how to combine probability and logic with learning, is getting an increased attention in several disciplines such as knowledge representation, reasoning about uncertainty, data mining, and machine learning simulateously. This results in the newly emerging subfield known under the names of statistical relational learning and probabilistic inductive logic programming. This book provides an introduction to the field with an emphasis on the methods based on logic programming principles. It is concerned with formalisms and systems, implementations and applications, as well as with the theory of probabilistic inductive logic programming. The 13 chapters of this state-of-the-art surve...