You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Environmental and Ecological Chemistry is a component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Environmental and Ecological Chemistry prsents the essential aspects such as: Fundamental Environmental Chemistry; Atmospheric Chemistry; Soil Chemistry; Aquatic Chemistry; Ecological Chemistry; Chemistry of Organic Pollutants Including Agrochemicals. These volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.
In Biotechnology for Fuels and Chemicals: The Twenty-Ninth Symposium, leading US and international researchers from academia, industry, and government exchange cutting-edge technical information and update current trends in the development and application of biotechnology for sustainable production of fuels and chemicals. This symposium emphasizes advances in biotechnology to produce high-volume, low-price products from renewable resources, while improving the environment. The major areas of interest include advanced feedstock production and processing, enzymatic and microbial biocatalysis, bioprocess research and development, opportunities in biorefineries, and commercialization of biobased...
In the Seventeenth Symposium on Biotechnology for Fuels and Chemicals, leading researchers from academia, industry, and government present state-of-the-art papers on how bioengineering can be used to produce fuels and chemicals competitively. This year's program covered topics in thermal, chemical, and biological processing; applied biological processing; bioprocessing research; process economics and commercialization; and environmental biotechnology. The ideas and techniques described will play an important role in developing new biological processes for producing fuels and chemicals on a large scale, and in reducing pollution, waste disposal problems, and the potential for global climate change.
In Biotechnology for Fuels and Chemicals: The Twenty-Eighth Symposium, leading researchers exchange cutting-edge technical information and update current trends in the development and application of biotechnology for sustainable production of fuels and chemicals. This symposium emphasizes advances in biotechnology to produce high-volume, low-price products from renewable resources, while improving the environment.
This book begins with a brief background on greenhouse gases sources and sinks and continues with a discussion in different sectors including forest fluxes to human health and modeling techniques to policy measures. The chapters explore in detail about the GHG emission budgets, mitigation strategies, technical advancement and input-output analysis. Greenhouse gases (GHGs) occur naturally in our atmosphere and are essential to the survival of most of the organisms on the planet earth. GHGs such as such as carbon dioxide, methane, nitrous oxide, and ozone etc. play a major role in balancing the radiative budget, by absorbing or emitting some of the infrared rays reflecting from the earth’s s...
This book systematically introduces the fundamentals, preparation technology, state-of-the-art applications, and future development of biomass-derived porous carbon materials. The authors provide a theoretical foundation that demonstrates the microstructure and physicochemical properties of carbon materials. The fabrication methods, including physical activation methods, chemical activation methods, and advances in other new fabrication methods are explicitly described. The book also identifies many potential applications of biomass (especially biomass-derived porous carbon materials), such as supercapacitors, removal of organic pollutants from water, CO2 capture, photocatalytic application, and farmland restoration. The book will be a valuable resource for researchers, scientists, and engineers working in the field of biomass-derived porous carbon materials, carbon resource development, and environmental protection.
industry, and 22% were from government. A total of oral presentations (including Special Topic presentations) and 329 poster presentations were delivered. The high number of poster submissions required splitting the poster session into two evening sessions. (Conference details are posted at http://www.eere.energy.gov/biomass/biotech_symposium/.) Almost 35% of the attendees were international, showing the strong and building worldwide interest in this area. Nations represented included Australia, Austria, Belgium, Brazil, Canada, Central African Republic, China, Denmark, Finland, France, Gambia, Germany, Hungary, India, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Portugal, ...
With detailed photos and schematic system diagrams, the Hazardous and Radioactive Waste Treatment Technologies Handbook provides the latest information on current technologies in the market. Intended as a reference for scientists, engineers, and engineering students, it covers waste-related thermal and non-thermal technologies, separation techniques, and stabilization technologies. It provides an overview of recent waste technologies, for both hazardous chemical wastes and radioactive wastes. By implementing the techniques presented in this book, readers will be able to decide which appropriate technology to use and how to design the equipment for their particular needs.
Fifteen leading scientists active in research on the chemistry, microbiology, enzymology, and genetics of coal biotransformation summarize knowledge of the mechanisms by which bacteria and fungi metabolize the macromolecular structure of lignite coals. They also explore the potential for developing commercially viable biotransformations of low rank coals into useful chemicals and clean-burning liquid and gaseous fuels. Microbial Transformations of Low Rank Coals reviews the types of aerobic and anaerobic microbes known to transform fuel and discusses the relative potential of aerobic versus anaerobic organisms. Biochemical mechanisms used by microorganisms to solubilize, depolymerize, liquify, and gasify coal are examined. The book also reviews the potential for using microorganisms to remove organic sulfur from coal and the potential for using genetic engineering to improve coal biotransforming microorganisms.
An authoritative summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application for environmental sustainability Green Synthesis of Nanomaterials for Bioenergy Applications is an important guide that provides information on the fabrication of nanomaterial and the application of low cost, green methods. The book also explores the impact on various existing bioenergy approaches. Throughout the book, the contributors—noted experts on the topic—offer a reliable summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application to the field of environmental sustainability. The green synthesis of na...