You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.
Functional Equations in Probability Theory deals with functional equations in probability theory and covers topics ranging from the integrated Cauchy functional equation (ICFE) to stable and semistable laws. The problem of identical distribution of two linear forms in independent and identically distributed random variables is also considered, with particular reference to the context of the common distribution of these random variables being normal. Comprised of nine chapters, this volume begins with an introduction to Cauchy functional equations as well as distribution functions and characteristic functions. The discussion then turns to the nonnegative solutions of ICFE on R+; ICFE with a signed measure; and application of ICFE to the characterization of probability distributions. Subsequent chapters focus on stable and semistable laws; ICFE with error terms on R+; independent/identically distributed linear forms and the normal laws; and distribution problems relating to the arc-sine, the normal, and the chi-square laws. The final chapter is devoted to ICFE on semigroups of Rd. This book should be of interest to mathematicians and statisticians.
This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.
The International Conference of Computational Harmonic Analysis, held in Hong Kong during the period of June 4 ? 8, 2001, brought together mathematicians and engineers interested in the computational aspects of harmonic analysis. Plenary speakers include W Dahmen, R Q Jia, P W Jones, K S Lau, S L Lee, S Smale, J Smoller, G Strang, M Vetterlli, and M V Wickerhauser. The central theme was wavelet analysis in the broadest sense, covering time-frequency and time-scale analysis, filter banks, fast numerical computations, spline methods, multiscale algorithms, approximation theory, signal processing, and a great variety of applications.This proceedings volume contains sixteen papers from the lectures given by plenary and invited speakers. These include expository articles surveying various aspects of the twenty-year development of wavelet analysis, and original research papers reflecting the wide range of research topics of current interest.
This collection of contributions originates from the well-established conference series "Fractal Geometry and Stochastics" which brings together researchers from different fields using concepts and methods from fractal geometry. Carefully selected papers from keynote and invited speakers are included, both discussing exciting new trends and results and giving a gentle introduction to some recent developments. The topics covered include Assouad dimensions and their connection to analysis, multifractal properties of functions and measures, renewal theorems in dynamics, dimensions and topology of random discrete structures, self-similar trees, p-hyperbolicity, phase transitions from continuous to discrete scale invariance, scaling limits of stochastic processes, stemi-stable distributions and fractional differential equations, and diffusion limited aggregation. Representing a rich source of ideas and a good starting point for more advanced topics in fractal geometry, the volume will appeal to both established experts and newcomers.
Fractal geometry is a new and promising field for researchers from different disciplines such as mathematics, physics, chemistry, biology and medicine. It is used to model complicated natural and technical phenomena. The most convincing models contain an element of randomness so that the combination of fractal geometry and stochastics arises in between these two fields. It contains contributions by outstanding mathematicians and is meant to highlight the principal directions of research in the area. The contributors were the main speakers attending the conference "Fractal Geometry and Stochastics" held at Finsterbergen, Germany, in June 1994. This was the first international conference ever to be held on the topic. The book is addressed to mathematicians and other scientists who are interested in the mathematical theory concerning: • Fractal sets and measures • Iterated function systems • Random fractals • Fractals and dynamical systems, and • Harmonic analysis on fractals. The reader will be introduced to the most recent results in these subjects. Researchers and graduate students alike will benefit from the clear expositions.
This volume constitutes the proceedings of the International Conference on Dynamical Systems in Honor of Prof. Liao Shantao (1920-97). The Third World Academy of Sciences awarded the first ever mathematics prize in 1985 to Prof. Liao in recognition of his foundational work in differentiable dynamical systems and his work in periodic transformation of spheres. The conference was held in Beijing in August 1998. There were about 90 participants, and nearly 60 talks were delivered.The topics covered include differentiable dynamics, topological dynamics, hamiltonian dynamics, complex dynamics, ergodic and stochastic dynamics, and fractals theory. Dynamical systems is a field with many difficult problems, and techniques are being developed to deal with those problems. This volume contains original studies of great mathematical depth and presents some of the fascinating numerical experiments.
These proceedings represent the current state of research on the topics 'boundary theory' and 'spectral and probability theory' of random walks on infinite graphs. They are the result of the two workshops held in Styria (Graz and St. Kathrein am Offenegg, Austria) between June 29th and July 5th, 2009. Many of the participants joined both meetings. Even though the perspectives range from very different fields of mathematics, they all contribute with important results to the same wonderful topic from structure theory, which, by extending a quotation of Laurent Saloff-Coste, could be described by 'exploration of groups by random processes'.
This contributed volume provides readers with an overview of the most recent developments in the mathematical fields related to fractals, including both original research contributions, as well as surveys from many of the leading experts on modern fractal theory and applications. It is an outgrowth of the Conference of Fractals and Related Fields III, that was held on September 19-25, 2015 in île de Porquerolles, France. Chapters cover fields related to fractals such as harmonic analysis, multifractal analysis, geometric measure theory, ergodic theory and dynamical systems, probability theory, number theory, wavelets, potential theory, partial differential equations, fractal tilings, combinatorics, and signal and image processing. The book is aimed at pure and applied mathematicians in these areas, as well as other researchers interested in discovering the fractal domain.
This work is based on a series of thematic workshops on the theory of wavelets and the theory of splines. Important applications are included. The volume is divided into four parts: Spline Functions, Theory of Wavelets, Wavelets in Physics, and Splines and Wavelets in Statistics. Part one presents the broad spectrum of current research in the theory and applications of spline functions. Theory ranges from classical univariate spline approximation to an abstract framework for multivariate spline interpolation. Applications include scattered-data interpolation, differential equations and various techniques in CAGD. Part two considers two developments in subdivision schemes; one for uniform reg...