You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book explore the use of new technologies in the area of satellite navigation receivers. In order to construct a reconfigurable receiver with a wide range of applications, the authors discuss receiver architecture based on software-defined radio techniques. The presentation unfolds in a user-friendly style and goes from the basics to cutting-edge research. The book is aimed at applied mathematicians, electrical engineers, geodesists, and graduate students. It may be used as a textbook in various GPS technology and signal processing courses, or as a self-study reference for anyone working with satellite navigation receivers.
The emergence of satellite technology has changed the lives of millions of people. In particular, GPS has brought an unprecedented level of accuracy to the field of geodesy. This text is a guide to the algorithms and mathematical principles that account for the success of GPS technology and replaces the authors' previous work, Linear Algebra, Geodesy, and GPS (1997). An initial discussion of the basic concepts, characteristics and technical aspects of different satellite systems is followed by the necessary mathematical content which is presented in a detailed and self-contained fashion. At the heart of the matter are the positioning algorithms on which GPS technology relies, the discussion of which will affirm the mathematical contents of the previous chapters. Numerous ready-to-use MATLAB codes are included for the reader. This comprehensive guide will be invaluable for engineers and academic researchers who wish to master the theory and practical application of GPS technology.
This concise, fast-paced text introduces the concepts and applications behind plane networks. It presents fundamental material from linear algebra and differential equations, and offers several different applications of the continuous theory. Practical problems, supported by MATLAB files, underscore the theory; additional material can be downloaded from the author's website.
This volume contains selected papers by Torben Krarup, one of the most important geodesists of the 20th century. The collection includes the famous booklet "A Contribution to the Mathematical Foundation of Physical Geodesy" from 1969, the unpublished "Molodenskij letters" from 1973, the final version of "Integrated Geodesy" from 1978, "Foundation of a Theory of Elasticity for Geodetic Networks" from 1974, as well as trend-setting papers on the theory of adjustment.
Over the past few years, the growth of GNSS applications has been staggering. And, this trend promises to continue in the foreseeable future. Placing emphasis on applications development, this unique resource offers a highly practical overview of GNSS (global navigation satellite systems), including GPS. The applications presented in the book range from the traditional location applications to combining GNSS with other sensors and systems and into more exotic areas, such as remote sensing and space weather monitoring. Written by leading experts in the field, this book presents the fundamental underpinnings of GNSS and provides you with detailed examples of various GNSS applications. Moreover...
Lecture Notes for Linear Algebra provides instructors with a detailed lecture-by-lecture outline for a basic linear algebra course. The ideas and examples presented in this e-book are based on Strang’s video lectures for Mathematics 18.06 and 18.065, available on MIT’s OpenCourseWare (ocw.mit.edu) and YouTube (youtube.com/mitocw). Readers will quickly gain a picture of the whole course—the structure of the subject, the key topics in a natural order, and the connecting ideas that make linear algebra so beautiful.
A comprehensive treatment of wavelets for both engineers and mathematicians.
In 1954, Antonio Marussi started a series of symposia in Venice. The first three of these covered the entire theoretical definition of 3-D geodesy as delineated in discussions with renowned contemporary scientists, particularly Martin Hotine. After Marussi's death, the symposia were finally named the Hotine-Marussi Symposia and were continued in Italy. The Third Hotine-Marussi Symposium was held in L'Aquila from May 30 to June 3, 1994. It provided geodesists interested in theory and methodology with the opportunity to discuss their theoretical achievements, as well as new topics in the geodetic sciences. This book thus provides an updated overview of the main geodetic theories in various fields of application.
"This practical book is perfect for students and professionals interested in navigation. It shows how to build and operate multi-GNSS and multi-frequency receivers with state-of-the-art techniques using this up-to-date, complete and easy-to-follow text, including new signals (BOC) and supported by MATLAB© code and digital samples"--