You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The founding of the Dudley Observatory at Albany, N.Y., in 1852 was a milestone in humanity's age-old quest to understand the heavens. As the best equipped astronomical observatory in the U.S. led by the first American to hold a Ph.D. in astronomy, Benjamin Apthorp Gould Jr., the observatory helped pioneer world-class astronomy in America. It also proclaimed Albany's status as a major national center of culture, knowledge and affluence. This book explores the story of the Dudley Observatory as a 150 year long episode in civic astronomy. The story ranges from a bitter civic controversy to a venture into space, from the banks of the Hudson River to the highlands of Argentina. It is a unique glimpse at a path not taken, a way of doing science once promising, now vanished. As discoveries by the Dudley Observatory's astronomers, especially its second director Lewis Boss, made significant contributions to the modern vision of our Milky Way galaxy as a rotating spiral of more than a million stars, the advance of astronomy left that little observatory behind.
On the occasion of the retirement of Ulrich Schwarz, a symposium was held in Groningen in May of 1996, celebrating his contributions to the study of the int- stellar medium, including his work on the high-velocity clouds. The coming together of many specialists in the latter ?eld prompted the idea of compiling a book c- taining their contributions, and summarizing the status of our understanding of the high-velocity cloud phenomenon. This seemed especially worthwhile at the time, since many exciting developments were taking place. After the discovery of some H i clouds with high velocities, about 40 years ago, the subject had been dominated by 21-cm observations of H i emission. Starting in the mid-1980s much progress was being made because of the availability of new instruments, such as large ground-based optical telescopes and UV observatories in space. The connections between the work on high-velocity clouds and other studies of the properties of the (hot) interstellar medium also became clearer.
Supernovae, hypernovae and gamma-ray bursts are among the most energetic explosions in the universe. The light from these outbursts is, for a brief time, comparable to billions of stars and can outshine the host galaxy within which the explosions reside. Most of the heavy elements in the universe are formed within these energetic explosions. Surprisingly enough, the collapse of massive stars is the primary source of not just one, but all three of these explosions. As all of these explosions arise from stellar collapse, to understand one requires an understanding of the others. Stellar Collapse marks the first book to combine discussions of all three phenomena, focusing on the similarities and differences between them. Designed for graduate students and scientists newly entering this field, this book provides a review not only of these explosions, but the detailed physical models used to explain them from the numerical techniques used to model neutrino transport and gamma-ray transport to the detailed nuclear physics behind the evolution of the collapse to the observations that have led to these three classes of explosions.
Stellar astrophysics still provides the basic framework for deciphering the imprints left over by the evolving universe on all scales. Advances or shortcomings in the former field have direct consequences in our ability to understand the global properties of the latter. This volume contains the most recent updates on a variety of topics that, though independent by themselves, are inevitably connected on a cosmological scale. These include comprehensive articles by leaders in fields extending from stellar atmospheres through properties of the stellar component in the Milky Way up to the stellar environment in high redshift galaxies. The wide coverage of astrophysical themes makes this volume very valuable for researchers and Ph.D. students in astrophysics.
None
Starbursts are important features of early galaxy evolution. Many of the distant, high-redshift galaxies we are able to detect are in a starbursting phase, often apparently provoked by a violent gravitational interaction with another galaxy. In fact, if we did not know that major starbursts existed, these conference proceedings testify that we would indeed have difficulties explaining the key properties of the Universe! These conference proceedings cover starbursts from the small-scale star-forming regions in nearby galaxies to galaxy-wide events at high redshifts; one of the major themes of the conference proved to be "scalability", i.e., can we scale up the small-scale events to describe the physics on larger scales. The key outcome of this meeting – and these proceedings – is a resounding "yes" to this fundamental, yet profound question. The enhanced synergy facilitated by the collaboration among observers using cutting-edge ground and space-based facilities, theorists and modellers has made these proceedings a true reflection of the state of the art in this very rapidly evolving field.
This book presents comprehensive coverage of the Sun and space weather, two rapidly evolving topics. In this new edition, the information has been updated to include the latest results. In addition, new sections are included, like one on space weather data sources, as well as examples and information on new satellite missions.
Recombination lines at radio wavelengths have been - and still are - a pow erful tool for modern astronomy. For more than thirty years they have allowed astronomers to probe the gases from which stars form. They have even been detected in the Sun. In addition, observations of these spectral lines facilitate basic research into the atom, in forms and environments that can only exist in the huge dimensions and extreme conditions of cosmic laboratories. We intend this book to serve as a tourist's guide to the world of Radio Recombination Lines. It contains three divisions: a history of their discovery, the physics of how they form and how their voyage to us influences their spectral profiles, a...
This book presents a complete summary of the author's twenty five years of experience in telescope design. It provides a general introduction to every aspect of telescope design. It also discusses the theory behind telescope design in depth, which makes it a good reference book for professionals. It covers Radio, Infrared, Optical, X-Ray and Gamma-Ray wavelengths. Originally published in Chinese.