You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in natur
This book constitutes the refereed proceedings of the Second IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2011, held in Costa de Caparica, Portugal, in February 2011. The 67 revised full papers were carefully selected from numerous submissions. They cover a wide spectrum of topics ranging from collaborative enterprise networks to microelectronics. The papers are organized in topical sections on collaborative networks, service-oriented systems, computational intelligence, robotic systems, Petri nets, sensorial and perceptional systems, sensorial systems and decision, signal processing, fault-tolerant systems, control systems, energy systems, electrical machines, and electronics.
A Proven, Hands-On Approach for Students without a Strong Statistical FoundationSince the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students
Probabilistic Reasoning and Decision Making in Sensory-Motor Systems by Pierre Bessiere, Christian Laugier and Roland Siegwart provides a unique collection of a sizable segment of the cognitive systems research community in Europe. It reports on contributions from leading academic institutions brought together within the European projects Bayesian Inspired Brain and Artifact (BIBA) and Bayesian Approach to Cognitive Systems (BACS). This fourteen-chapter volume covers important research along two main lines: new probabilistic models and algorithms for perception and action, new probabilistic methodology and techniques for artefact conception and development. The work addresses key issues concerned with Bayesian programming, navigation, filtering, modelling and mapping, with applications in a number of different contexts.
Provides a holistic overview of the foundational ideas in music, from the physical and mathematical properties of sound to symbolic representations Combines signlas and language models in one place to explore how sound may be represented and manipulated by computer systems More complex discussions are gradually incorporated and each chapter includes guided programming activities to familiarise readers with the discussed theory
Introduction to Machine Learning with Applications in Information Security, Second Edition provides a classroom-tested introduction to a wide variety of machine learning and deep learning algorithms and techniques, reinforced via realistic applications. The book is accessible and doesn’t prove theorems, or dwell on mathematical theory. The goal is to present topics at an intuitive level, with just enough detail to clarify the underlying concepts. The book covers core classic machine learning topics in depth, including Hidden Markov Models (HMM), Support Vector Machines (SVM), and clustering. Additional machine learning topics include k-Nearest Neighbor (k-NN), boosting, Random Forests, and...
Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniqu
Entropy Randomization in Machine Learning presents a new approach to machine learning—entropy randomization—to obtain optimal solutions under uncertainty (uncertain data and models of the objects under study). Randomized machine-learning procedures involve models with random parameters and maximum entropy estimates of the probability density functions of the model parameters under balance conditions with measured data. Optimality conditions are derived in the form of nonlinear equations with integral components. A new numerical random search method is developed for solving these equations in a probabilistic sense. Along with the theoretical foundations of randomized machine learning, Ent...
Machine learning has redefined the way we work with data and is increasingly becoming an indispensable part of everyday life. The Pragmatic Programmer for Machine Learning: Engineering Analytics and Data Science Solutions discusses how modern software engineering practices are part of this revolution both conceptually and in practical applictions. Comprising a broad overview of how to design machine learning pipelines as well as the state-of-the-art tools we use to make them, this book provides a multi-disciplinary view of how traditional software engineering can be adapted to and integrated with the workflows of domain experts and probabilistic models. From choosing the right hardware to designing effective pipelines architectures and adopting software development best practices, this guide will appeal to machine learning and data science specialists, whilst also laying out key high-level principlesin a way that is approachable for students of computer science and aspiring programmers.
The ?eld of multi-sensor fusion and integration is growing into signi?cance as our societyisintransitionintoubiquitouscomputingenvironmentswithroboticservices everywhere under ambient intelligence. What surround us are to be the networks of sensors and actuators that monitor our environment, health, security and safety, as well as the service robots, intelligent vehicles, and autonomous systems of ever heightened autonomy and dependability with integrated heterogeneous sensors and actuators. The ?eld of multi-sensor fusion and integration plays key role for m- ing the above transition possible by providing fundamental theories and tools for implementation. This volume is an edition of the pa...