You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The PUILS series presents Progress in Ultrafast Intense Laser Science. This third volume in the series covers a diverse range of disciplines, focusing on such topics as strong field ionization of atoms, ionization and fragmentation of molecules and clusters, generation of high-order harmonics and attosecond pulses, filamentation and laser plasma interaction, and the development of ultrashort and ultrahigh-intensity light sources.
This is the first of a series of books on Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field that spans atomic and molecular physics, molecular science, and optical science. It covers intense VUV laser-cluster interaction, resonance and chaos-assisted tunneling, and the effects of the carrier-envelope phase on high-order harmonic generation.
This book series addresses a newly emerging interdisciplinary research field, Ultrafast Intense Laser Science, spanning atomic and molecular physics, molecular science, and optical science. Highlights of this second volume include Coulomb explosion and fragmentation of molecules, control of chemical dynamics, high-order harmonic generation, propagation and filamentation, and laser-plasma interaction. All chapters are authored by foremost experts in their fields.
The transition state is the critical configuration of a reaction system situated at the highest point of the most favorable reaction path on the potential-energy surface, its characteristics governing the dynamic behavior of reacting systems decisively. This text presents an accurate survey of current theoretical investigations of chemical reactions, with a focus on the nature of the transition state. Its scope ranges from general basic theories associated with the transition states, to their computer-assisted applications, through to a number of reactions in a state-of-the-art fashion. It covers various types of gas-phase elementary reactions, as well as some specific types of chemical processes taking place in the liquid phase. Also investigated is the recently developing transition state spectroscopy. This text will not only serve as a contemporary reference book on the concept of the transition state, but will also assist the readers in gaining valuable key principles regarding the essence of chemical kinetics and dynamics.
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.
This book brings together in a single volume the most up-to-date results in the field presented at Ultrafast Optics and Applications of High Field and Short Wavelength Sources 2005. The volume contains keynote and invited contributions together with carefully selected regular contributions. The book aims at the highest level of presentation to make it useful as a reference for those working in the field.
The Advances series highlights recent developments in atomic, molecular and optical physics. Readers can learn about recent advances from articles that are comprehensive in nature. These articles often contain background material and extensive references; as such they can serve as useful source material for many years to come. - The articles are written by experts in their fields - Most articles offer readers the opportunity to learn about recent advances in atomic, molecular, and optical physics. Since there are only modest restrictions on the length of the contributions, authors have the ability to develop the subject matter in a clear fashion
This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches -...
In view of the rapid growth in both experimental and theoretical studies of multi-photon processes and multi-photon spectroscopy of atoms, ions, and molecules in chemistry, physics, biology and materials science, it is timely to publish an advanced series that contains review papers readable not only by active researchers in these areas, but also by those who are non-experts but who wish to enter the field. This present volume attempts to serve this purpose. Each chapter is written in a self-contained manner by experts in their own area of expertise so that general readers can grasp the knowledge in that area without too much preparation.
This is the first book providing overview of magnetism in curved geometries, highlighting numerous peculiarities emerging from geometrically curved magnetic objects such as curved wires, shells, as well as complex three-dimensional structures. Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines across electronics, photonics, plasmonics and magnetics. This approach provides the means to modify conventional and even launch novel functionalities by tailoring the local curvature of an object. The book covers the theory of curvilinear micromagnetism as well as experimental studies of geometrically curved magnets including...