You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book discusses the modeling and analysis of magnetic resonance imaging (MRI) data acquired from the human brain. The data processing pipelines described rely on R. The book is intended for readers from two communities: Statisticians who are interested in neuroimaging and looking for an introduction to the acquired data and typical scientific problems in the field; and neuroimaging students wanting to learn about the statistical modeling and analysis of MRI data. Offering a practical introduction to the field, the book focuses on those problems in data analysis for which implementations within R are available. It also includes fully worked examples and as such serves as a tutorial on MRI...
Mathematical Methods for Signal and Image Analysis and Representation presents the mathematical methodology for generic image analysis tasks. In the context of this book an image may be any m-dimensional empirical signal living on an n-dimensional smooth manifold (typically, but not necessarily, a subset of spacetime). The existing literature on image methodology is rather scattered and often limited to either a deterministic or a statistical point of view. In contrast, this book brings together these seemingly different points of view in order to stress their conceptual relations and formal analogies. Furthermore, it does not focus on specific applications, although some are detailed for th...
Extensively updated to reflect the evolution of statistics and computing, the second edition of the bestselling R Graphics comes complete with new packages and new examples. Paul Murrell, widely known as the leading expert on R graphics, has developed an in-depth resource that helps both neophyte and seasoned users master the intricacies of R graph
The Disability Bioethics Reader is the first introduction to the field of bioethics presented through the lens of critical disability studies and the philosophy of disability. Introductory and advanced textbooks in bioethics focus almost entirely on issues that disproportionately affect disabled people and that centrally deal with becoming or being disabled. However, such textbooks typically omit critical philosophical reflection on disability. Directly addressing this omission, this volume includes 36 chapters, most appearing here for the first time, that cover key areas pertaining to disability bioethics, such as: state-of-the-field analyses of modern medicine, bioethics, and disability th...
The huge volume of neuroscience data and the wide variety of data formats generated across different neuroscience communities has posed a challenge to traditional methods of data management, data sharing and data mining. Mandates on data sharing and the demand for using open data has driven the development of advanced methodologies and tools to effectively explore, mine and integrate data. However, the growing number of resources make it harder for researchers to navigate this landscape. Awareness of these tools and resources is vital for effective data mining and unlocking new discoveries. The goal of this research collection is to provide an overview of available resources, centred around making data findable, accessible, interoperable and reusable (FAIR).
This book discusses modelling and analysis of Magnetic Resonance Imaging (MRI) data of the human brain. For the data processing pipelines we rely on R, the software environment for statistical computing and graphics. The book is intended for readers from two communities: Statisticians, who are interested in neuroimaging and look for an introduction to the acquired data and typical scientific problems in the field and neuroimaging students, who want to learn about the statistical modeling and analysis of MRI data. Being a practical introduction, the book focuses on those problems in data analysis for which implementations within R are available. By providing full worked-out examples the book ...
This book constitutes the refereed proceedings of the 11th International Conference on Intelligent Computer Mathematics, CICM 2018, held in Hagenberg, Austria, in August 2018. The 23 full papers presented were carefully reviewed and selected from a total of 36 submissions. The papers focos on the Calculemus, Digital Mathematics Libraries, and Mathematical Knowledge Management tracks which also correspond to the subject areas of the predecessor meetings. Orthogonally, the Systems and Projects track called for descriptions of digital resources, such as data and systems, and of projects, whether old, current, or new, and survey papers covering any topics of relevance to the CICM community.
This book constitutes the refereed proceedings of the 10th International Conference on Intelligent Computer Mathematics, CICM 2017, held in Edinburgh, Scotland, in July 2017. The 22 full papers and 3 abstracts of invited papers presented were carefully reviewed and selected from a total of 40 submissions. The papers are organized in three tracks: the Calculemus track examining the integration of symbolic computation and mechanized reasoning; the Digital Mathematics Libraries track dealing with math-aware technologies, standards, algorithms, and processes; the Mathematical Knowledge Management track being concerned with all aspects of managing mathematical knowledge, in informal, semi-formal, and formal settings. An additional track Systems and Projects contains descriptions of systems and relevant projects, both of which are key to a research topic where theory and practice interact on explicitly represented knowledge.
This book explores various state-of-the-art aspects behind the statistical analysis of neuroimaging data. It examines the development of novel statistical approaches to model brain data. Designed for researchers in statistics, biostatistics, computer science, cognitive science, computer engineering, biomedical engineering, applied mathematics, physics, and radiology, the book can also be used as a textbook for graduate-level courses in statistics and biostatistics or as a self-study reference for Ph.D. students in statistics, biostatistics, psychology, neuroscience, and computer science.
Computational Epigenetics and Diseases, written by leading scientists in this evolving field, provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases. In particular, the major computational tools, databases, and strategies for computational epigenetics analysis, for example, DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA, are summarized, in the context of human diseases. This book discusses bioinformatics methods for epigenetic analysis specifically applied to human conditions such as aging, atherosclerosis, diabetes mellitus, schizophrenia, bipolar disorder, Alzheimer disease, Parkinson disease, liver and autoimmune diso...