You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is a self-contained and systematic account of affine differential geometry from a contemporary viewpoint, not only covering the classical theory, but also introducing the modern developments that have happened over the last decade. In order both to cover as much as possible and to keep the text of a reasonable size, the authors have concentrated on the significant features of the subject and their relationship and application to such areas as Riemannian, Euclidean, Lorentzian and projective differential geometry. In so doing, they also provide a modern introduction to the last. Some of the important geometric surfaces considered are illustrated by computer graphics, making this a physically and mathematically attractive book for all researchers in differential geometry, and for mathematical physicists seeking a quick entry into the subject.
This introduction to algebraic geometry allows readers to grasp the fundamentals of the subject with only linear algebra and calculus as prerequisites. After a brief history of the subject, the book introduces projective spaces and projective varieties, and explains plane curves and resolution of their singularities. The volume further develops the geometry of algebraic curves and treats congruence zeta functions of algebraic curves over a finite field. It concludes with a complex analytical discussion of algebraic curves. The author emphasizes computation of concrete examples rather than proofs, and these examples are discussed from various viewpoints. This approach allows readers to develop a deeper understanding of the theorems.
This two-volume introduction to differential geometry, part of Wiley's popular Classics Library, lays the foundation for understanding an area of study that has become vital to contemporary mathematics. It is completely self-contained and will serve as a reference as well as a teaching guide. Volume 1 presents a systematic introduction to the field from a brief survey of differentiable manifolds, Lie groups and fibre bundles to the extension of local transformations and Riemannian connections. The second volume continues with the study of variational problems on geodesics through differential geometric aspects of characteristic classes. Both volumes familiarize readers with basic computational techniques.
This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi’s career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kähler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables geometry, as well as to graduate students in mathematics.
Since the times of Gauss, Riemann, and Poincare, one of the principal goals of the study of manifolds has been to relate local analytic properties of a manifold with its global topological properties. Among the high points on this route are the Gauss-Bonnet formula, the de Rham complex, and the Hodge theorem; these results show, in particular, that the central tool in reaching the main goal of global analysis is the theory of differential forms. The book by Morita is a comprehensive introduction to differential forms. It begins with a quick introduction to the notion of differentiable manifolds and then develops basic properties of differential forms as well as fundamental results concerning them, such as the de Rham and Frobenius theorems. The second half of the book is devoted to more advanced material, including Laplacians and harmonic forms on manifolds, the concepts of vector bundles and fiber bundles, and the theory of characteristic classes. Among the less traditional topics treated is a detailed description of the Chern-Weil theory. The book can serve as a textbook for undergraduate students and for graduate students in geometry.
In the past thirty years, differential geometry has undergone an enormous change with infusion of topology, Lie theory, complex analysis, algebraic geometry and partial differential equations. Professor Matsushima played a leading role in this transformation by bringing new techniques of Lie groups and Lie algebras into the study of real and complex manifolds. This volume is a collection of all the 46 papers written by him.
This collection is designed to acquaint readers with advances in Radon transforms carried out in the former Soviet Union. The papers focus on mathematical problems related to applications of Radon transforms. Some of the problems arose from practical tomography, while others are theoretical problems originating in tomography. The book should be of use to mathematicians working in integral geometry and mathematical problems of tomography, as well as scientists who work on inverse problems and their computer realization.
This volume contains papers from the Short Thematic Program on Rational Points, Rational Curves, and Entire Holomorphic Curves and Algebraic Varieties, held from June 3-28, 2013, at the Centre de Recherches Mathématiques, Université de Montréal, Québec, Canada. The program was dedicated to the study of subtle interconnections between geometric and arithmetic properties of higher-dimensional algebraic varieties. The main areas of the program were, among others, proving density of rational points in Zariski or analytic topology on special varieties, understanding global geometric properties of rationally connected varieties, as well as connections between geometry and algebraic dynamics exploring new geometric techniques in Diophantine approximation. This book is co-published with the Centre de Recherches Mathématiques.