You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Singularity theory appears in numerous branches of mathematics, as well as in many emerging areas such as robotics, control theory, imaging, and various evolving areas in physics. The purpose of this proceedings volume is to cover recent developments in singularity theory and to introduce young researchers from developing countries to singularities in geometry and topology.The contributions discuss singularities in both complex and real geometry. As such, they provide a natural continuation of the previous school on singularities held at ICTP (1991), which is recognized as having had a major influence in the field.
In this volume, the authors study asymptotics of the geometry and spectral theory of degenerating sequences of finite volume hyperbolic manifolds of three dimensions. Thurston's hyperbolic surgery theorem assets the existence of non-trivial sequences of finite volume hyperbolic three manifolds which converge to a three manifold with additional cusps. In the geometric aspect of their study, the authors use the convergence of hyperbolic metrics on the thick parts of the manifolds under consideration to investigate convergentce of tubes in the manifolds of the sequence to cusps of the limiting manifold. In the specral theory aspect of the work, they prove convergence of heat kernels. They then ...
Begins with the bosonic construction of four level -1/2 irreducible representations of the symplectic affine Kac-Moody Lie algebra Cl. The direct sum of two of these is given the structure of a vertex operator algebra (VOA), and the direct sum of the other two is given the structure of a twisted VOA-module. The dissertation includes the bosonic analog of the fermionic construction of a vertex operator superalgebra from the four level 1 irreducible modules of type Dl. No index. Annotation copyrighted by Book News, Inc., Portland, OR
Given a homogeneous ideal I and a monomial order, the initials ideal in (I) can be formed. The initial idea gives information about I, but quite a lot of information is also lost. The author remedies this by defining a series of higher initial ideals of a homogenous ideal, and considers the case when I is the homogenous ideal of a curve in P3 and the monomial order is reverse lexicographic. No index. Annotation copyrighted by Book News, Inc., Portland, OR
The invariant integrals of spherical functions over certain infinite families of unipotent orbits in symplectic groups over a p-adic field of characteristic zero are explicitly calculated. The results are then put into a conjectural framework that predicts for split classical groups which linear combinations of unipotent orbital integrals are stable distributions. No index. Annotation copyrighted by Book News, Inc., Portland, OR
In this volume, the authors address the following: Let $A$ be a Banach algebra, and let $\sum\:\ 0\rightarrow I\rightarrow\frak A\overset\pi\to\longrightarrow A\rightarrow 0$ be an extension of $A$, where $\frak A$ is a Banach algebra and $I$ is a closed ideal in $\frak A$. The extension splits algebraically (respectively, splits strongly) if there is a homomorphism (respectively, continuous homomorphism) $\theta\: A\rightarrow\frak A$ such that $\pi\circ\theta$ is the identity on $A$. Consider first for which Banach algebras $A$ it is true that every extension of $A$ in a particular class of extensions splits, either algebraically or strongly, and second for which Banach algebras it is true...
In this book, the authors treat the full Hodge theory for the de Rham complex when calculated in the Sobolev topology rather than in the $L2$ topology. The use of the Sobolev topology strikingly alters the problem from the classical setup and gives rise to a new class of elliptic boundary value problems. The study takes place on both the upper half space and on a smoothly bounded domain. It features: a good introduction to elliptic theory, pseudo-differential operators, and boundary value problems; theorems completely explained and proved; and new geometric tools for differential analysis on domains and manifolds.
Presents a systematic treatment for the evaluation of basic almost poised series. Some 200 identities are covered, among which most are believed to be new. Their connections with the q-Clausen formulae as well as Rogers-Ramanujan identities are sketched. No index. Annotation copyrighted by Book News, Inc., Portland, OR