You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.
Mathematicians are expected to publish their work: in journals, conference proceedings, and books. It is vital to advancing their careers. Later, some are asked to become editors. However, most mathematicians are trained to do mathematics, not to publish it. But here, finally, for graduate students and researchers interested in publishing their work, Steven G. Krantz, the respected author of several "how-to" guides in mathematics, shares his experience as an author, editor, editorial board member, and independent publisher. This new volume is an informative, comprehensive guidebook to publishing mathematics. Krantz describes both the general setting of mathematical publishing and the specifi...
For many years, this classroom-tested, best-selling text has guided mathematics students to more advanced studies in topology, abstract algebra, and real analysis. Elements of Advanced Mathematics, Third Edition retains the content and character of previous editions while making the material more up-to-date and significant. This third edition adds four new chapters on point-set topology, theoretical computer science, the P/NP problem, and zero-knowledge proofs and RSA encryption. The topology chapter builds on the existing real analysis material. The computer science chapters connect basic set theory and logic with current hot topics in the technology sector. Presenting ideas at the cutting ...
This is the second edition of a book originally published in 1997. Today the internet virtually consumes all of our lives (especially the lives of writers). As both readers and writers, we are all aware of blogs, chat rooms, and preprint servers. There are now electronic-only journals and print-on-demand books, Open Access journals and joint research projects such as MathOverflow—not to mention a host of other new realities. It truly is a brave new world, one that can be overwhelming and confusing. The truly new feature of this second edition is an extensive discussion of technological developments. Similar to the first edition, Krantz's frank and straightforward approach makes this book particularly suitable as a textbook for an undergraduate course.
This third edition is a lively and provocative tract on how to teach mathematics in today's new world of online learning tools and innovative teaching devices. The author guides the reader through the joys and pitfalls of interacting with modern undergraduates--telling you very explicitly what to do and what not to do. This third edition has been streamlined from the second edition, but still includes the nuts and bolts of good teaching, discussing material related to new developments in teaching methodology and technique, as well as adding an entire new chapter on online teaching methods.
Differential Equations: Theory, Technique, and Practice with Boundary Value Problems presents classical ideas and cutting-edge techniques for a contemporary, undergraduate-level, one- or two-semester course on ordinary differential equations. Authored by a widely respected researcher and teacher, the text covers standard topics such as partial diff
This traditional text is intended for mainstream one- or two-semester differential equations courses taken by undergraduates majoring in engineering, mathematics, and the sciences. Written by two of the world's leading authorities on differential equations, Simmons/Krantz provides a cogent and accessible introduction to ordinary differential equations written in classical style. Its rich variety of modern applications in engineering, physics, and the applied sciences illuminate the concepts and techniques that students will use through practice to solve real-life problems in their careers. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
"Krantz is a very prolific writer. He creates excellent examples and problem sets."-Albert Boggess, Professor and Director of the School of Mathematics and Statistical Sciences, Arizona State University, Tempe, USADesigned for a one- or two-semester undergraduate course, Differential Equations: Theory, Technique and Practice, Second Edition educa
"One of the themes of the book is how to have a fulfilling professional life. In order to achieve this goal, Krantz discusses keeping a vigorous scholarly program going and finding new challenges, as well as dealing with the everyday tasks of research, teaching, and administration." "In short, this is a survival manual for the professional mathematician - both in academics and in industry and government agencies. It is a sequel to the author's A Mathematician's Survival Guide."--BOOK JACKET.