You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"Descriptive Topology in Selected Topics of Functional Analysis" is a collection of recent developments in the field of descriptive topology, specifically focused on the classes of infinite-dimensional topological vector spaces that appear in functional analysis. Such spaces include Fréchet spaces, (LF)-spaces and their duals, and the space of continuous real-valued functions C(X) on a completely regular Hausdorff space X, to name a few. These vector spaces appear in functional analysis in distribution theory, differential equations, complex analysis, and various other analytical settings. This monograph provides new insights into the connections between the topological properties of linear function spaces and their applications in functional analysis.
This volume presents the proceedings of the Seventh International Colloquium on Finite or Infinite Dimensional Complex Analysis held in Fukuoka, Japan. The contributions offer multiple perspectives and numerous research examples on complex variables, Clifford algebra variables, hyperfunctions and numerical analysis.
Ponencias de los seminarios de análisis matemáticos impartidos en Málaga y Sevilla entre septiembre de 2002 y febrero de 2003. Entre los diversos artículos que contiene citamos: Continuous descent methods, Algebras of analytic functions on Banach Spaces; también en español como Estimaciones con peso deducidas del Principio de Calderón-Zygmund, etc.
Frechet spaces have been studied since the days of Banach. These spaces, their inductive limits and their duals played a prominent role in the development of the theory of locally convex spaces. Also they are natural tools in many areas of real and complex analysis. The pioneering work of Grothendieck in the fifties has been one of the important sources of inspiration for research in the theory of Frechet spaces. A structure theory of nuclear Frechet spaces emerged and some important questions posed by Grothendieck were settled in the seventies. In particular, subspaces and quotient spaces of stable nuclear power series spaces were completely characterized. In the last years it has become in...
This volume contains the proceedings of the International Conference on Algebra and Related Topics, held from July 2–5, 2018, at Mohammed V University, Rabat, Morocco. Linear reserver problems demand the characterization of linear maps between algebras that leave invariant certain properties or certain subsets or relations. One of the most intractable unsolved problems is Kaplansky's conjecture: every surjective unital invertibility preserving linear map between two semisimple Banach algebras is a Jordan homomorphism. Recently, there has been an upsurge of interest in nonlinear preservers, where the maps studied are no longer assumed linear but instead a weak algebraic condition is somehow...
This book discusses a variety of topics in mathematics and engineering as well as their applications, clearly explaining the mathematical concepts in the simplest possible way and illustrating them with a number of solved examples. The topics include real and complex analysis, special functions and analytic number theory, q-series, Ramanujan’s mathematics, fractional calculus, Clifford and harmonic analysis, graph theory, complex analysis, complex dynamical systems, complex function spaces and operator theory, geometric analysis of complex manifolds, geometric function theory, Riemannian surfaces, Teichmüller spaces and Kleinian groups, engineering applications of complex analytic methods...
"This useful volume, based on the Taniguchi International Workshop held recently in Sanda, Hyogo, Japan, discusses current problems and offers the mostup-to-date methods for research in spectral and scattering theory."
"Based on papers presented at a recent international conference on algebra and algebraic geometry held jointly in Antwerp and Brussels, Belgium. Presents both survey and research articles featuring new results from the intersection of algebra and geometry. "
"Presenting the proceedings of a conference held recently at Northwestern University, Evanston, Illinois, on the occasion of the retirement of noted mathematician Daniel Zelinsky, this novel reference provides up-to-date coverage of topics in commutative and noncommutative ring extensions, especially those involving issues of separability, Galois theory, and cohomology."