You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
We are delighted to present the inaugural Frontiers in Cardiovascular Medicine “Rising Stars” article collection. This collection showcases the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers were individually nominated by the Chief Editors of the Journal in recognition of their potential to influence the future directions in their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of cardiovascular medicine, including the elucidation of fundamental biology, the development of novel diagnostics or therapeutics, computational modelling approaches, and bioengineering strategies for regeneration.
This book discusses geometric and mathematical models that can be used to study fluid and structural mechanics in the cardiovascular system. Where traditional research methodologies in the human cardiovascular system are challenging due to its invasive nature, several recent advances in medical imaging and computational fluid and solid mechanics modelling now provide new and exciting research opportunities. This emerging field of study is multi-disciplinary, involving numerical methods, computational science, fluid and structural mechanics, and biomedical engineering. Certainly any new student or researcher in this field may feel overwhelmed by the wide range of disciplines that need to be u...
This book presents a road map for applying the stages in conceptualization, evaluation, and testing of biomedical devices in a systematic order of approach, leading to solutions for medical problems within a well-deserved safety limit. The issues discussed will pave the way for understanding the preliminary concepts used in modern biomedical device engineering, which include medical imaging, computational fluid dynamics, finite element analysis, particle image velocimetry, and rapid prototyping. This book would undoubtedly be of use to biomedical engineers, medical doctors, radiologists, and any other professionals related to the research and development of devices for health care.
This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods – and at a lower computational cost. This work starts with a brief review of computability theory, aimed to convince the reader – more specifically, researchers of more traditional areas of mathematical modeling – about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed. The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing. The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches.
This textbook integrates the classic fields of mechanics—statics, dynamics, and strength of materials—using examples from biology and medicine. The book is excellent for teaching either undergraduates in biomedical engineering programs or health care professionals studying biomechanics at the graduate level. Extensively revised from a successful third edition, Fundamentals of Biomechanics features a wealth of clear illustrations, numerous worked examples, and many problem sets. The book provides the quantitative perspective missing from more descriptive texts, without requiring an advanced background in mathematics. It will be welcomed for use in courses such as biomechanics and orthopedics, rehabilitation and industrial engineering, and occupational or sports medicine. This book: Introduces the fundamental concepts, principles, and methods that must be understood to begin the study of biomechanics Reinforces basic principles of biomechanics with repetitive exercises in class and homework assignments given throughout the textbook Includes over 100 new problem sets with solutions and illustrations
None