You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Light Emission by Plants and Bacteria deals mainly with light coming from plants and bacteria as a result of various different reactions. This book emphasizes the light emission from photosynthetic organisms. The major aim of this book is to give insight on light emission studies in plant and bacteria in terms of its physiological, biophysical, and biochemical relevance. The book is divided into six parts. Part I serves as an introduction and at the same time a historical review and development of different concepts of the emission phenomena. Part II tackles the relationship of light emission to the various photosynthetic reactions. Part III discusses the concept of bioluminescence, with a f...
Respiration in plants, as in all living organisms, is essential to provide metabolic energy and carbon skeletons for growth and maintenance. As such, respiration is an essential component of a plant’s carbon budget. Depending on species and environmental conditions, it consumes 25-75% of all the carbohydrates produced in photosynthesis – even more at extremely slow growth rates. Respiration in plants can also proceed in a manner that produces neither metabolic energy nor carbon skeletons, but heat. This type of respiration involves the cyanide-resistant, alternative oxidase; it is unique to plants, and resides in the mitochondria. The activity of this alternative pathway can be measured based on a difference in fractionation of oxygen isotopes between the cytochrome and the alternative oxidase. Heat production is important in some flowers to attract pollinators; however, the alternative oxidase also plays a major role in leaves and roots of most plants. A common thread throughout this volume is to link respiration, including alternative oxidase activity, to plant functioning in different environments.
The leaf is an organ optimized for capturing sunlight and safely using that energy through the process of photosynthesis to drive the productivity of the plant and, through the position of plants as primary producers, that of Earth’s biosphere. It is an exquisite organ composed of multiple tissues, each with unique functions, working synergistically to: (1) deliver water, nutrients, signals, and sometimes energy-rich carbon compounds throughout the leaf (xylem); (2) deliver energy-rich carbon molecules and signals within the leaf during its development and then from the leaf to the plant once the leaf has matured (phloem); (3) regulate exchange of gasses between the leaf and the atmosphere...
The volume is intended as an introduction to the physical principles governing the main processes that occur in photosynthesis, with emphasis on the light reactions and electron transport chain. A unique feature of the photosynthetic apparatus is the fact that the molecular structures are known in detail for essentially all of its major components. The availability of this data has allowed their functions to be probed at a very fundamental level to discover the design principles that have guided evolution. Other volumes on photosynthesis have tended to focus on single components or on a specific set of biophysical techniques, and the authors’ goal is to provide new researchers with an intr...
According to many textbooks, carbohydrates are the photosynthesis and mitochondrial respiration fluctuate in a circadian manner in almost every unique final products of plant photosynthesis. However, the photoautotrophic production of organic organism studied. In addition, external triggers and environmental influences necessitate precise and nitrogenous compounds may be just as old, in appropriate re-adjustment of relative flux rates, to evolutionary terms, as carbohydrate synthesis. In the algae and plants of today, the light-driven assimilation prevent excessive swings in energy/resource provision of nitrogen remains a key function, operating and use. This requires integrated control of t...
Mitochondria in plants, as in other eukaryotes, play an essential role in the cell as the major producers of ATP via oxidative phosphorylation. However, mitochondria also play crucial roles in many other aspects of plant development and performance, and possess an array of unique properties which allow them to interact with the specialized features of plant cell metabolism. The two main themes running through the book are the interconnection between gene regulation and protein function, and the integration of mitochondria with other components of plant cells. The book begins with an overview of the dynamics of mitochondrial structure, morphology and inheritance. It then discusses the biogene...
Bryophytes, which are important constituents of ecosystems globally and often dominate carbon and water dynamics at high latitudes and elevations, were also among the pioneers of terrestrial photosynthesis. Consequently, in addition to their present day ecological value, modern representatives of these groups contain the legacy of adaptations that led to the greening of Earth. This volume brings together experts on bryophyte photosynthesis whose research spans the genome and cell through whole plant and ecosystem function and combines that with historical perspectives on the role of algal, bryophyte and vascular plant ancestors on terrestrialization of the Earth. The eighteen well-illustrated chapters reveal unique physiological approaches to achieving carbon balance and dealing with environmental limitations and stresses that present an alternative, yet successful strategy for land plants.
Respiration in Archaea and Bacteria summarizes the achievements of the past decade in the biochemistry, bioenergetics, structural and molecular biology of respiratory processes in selected groups of prokaryotes. It includes a series of Chapters providing an extensive coverage of the respiratory membrane-bound bacterial redox complexes and enzymes; it also covers evolution of respiration, cytochrome c biogenesis, bacterial haemoglobins, and oxidases as redox sensors.
These four volumes with close to one thousand contributions are the proceedings from the VIIIth International Congress on Photosynthesis, which was held in Stockholm, Sweden, on August 6- 11, 1989. The site for the Congress was the campus of the University of Stockholm. This in itself was an experiment, since the campus never before had been used for a conference of that size. On the whole, it was a very sucessful experiment. The outcome of a congress depends on many contributing factors, one major such factor being the scientific vigour of the participants, and I think it is safe to say that the pariticipants were vigourous indeed. Many exciting new fmdings were presented and thoroughly dic...
An Introduction that describes the origin of cytochrome notation also connects to the history of the field, focusing on research in England in the pre-World War II era. The start of the modern era of studies on structure-function of cytochromes and energy-transducing membrane proteins was marked by the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center. An ab initio logic of presentation in the book discusses the evolution of cytochromes and hemes, followed by theoretical perspectives on electron transfer in proteins and specifically in cytochromes. There is an extensive description of the molecular structures of cytochromes and cytochrome complexes from eukaryotic and prokaryotic sources, bacterial, plant and animal. The presentation of atomic structure information has a major role in these discussions, and makes an important contribution to the broad field of membrane protein structure-function.