Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Pattern Recognition, Machine Intelligence and Biometrics
  • Language: en
  • Pages: 883

Pattern Recognition, Machine Intelligence and Biometrics

"Pattern Recognition, Machine Intelligence and Biometrics" covers the most recent developments in Pattern Recognition and its applications, using artificial intelligence technologies within an increasingly critical field. It covers topics such as: image analysis and fingerprint recognition; facial expressions and emotions; handwriting and signatures; iris recognition; hand-palm gestures; and multimodal based research. The applications span many fields, from engineering, scientific studies and experiments, to biomedical and diagnostic applications, to personal identification and homeland security. In addition, computer modeling and simulations of human behaviors are addressed in this collection of 31 chapters by top-ranked professionals from all over the world in the field of PR/AI/Biometrics. The book is intended for researchers and graduate students in Computer and Information Science, and in Communication and Control Engineering. Dr. Patrick S. P. Wang is a Professor Emeritus at the College of Computer and Information Science, Northeastern University, USA, Zijiang Chair of ECNU, Shanghai, and NSC Visiting Chair Professor of NTUST, Taipei.

Syntactic Pattern Recognition, Applications
  • Language: en
  • Pages: 278

Syntactic Pattern Recognition, Applications

The many different mathematical techniques used to solve pattem recognition problems may be grouped into two general approaches: the decision-theoretic (or discriminant) approach and the syntactic (or structural) approach. In the decision-theoretic approach, aset of characteristic measurements, called features, are extracted from the pattems. Each pattem is represented by a feature vector, and the recognition of each pattem is usually made by partitioning the feature space. Applications of decision-theoretic approach indude character recognition, medical diagnosis, remote sensing, reliability and socio-economics. A relatively new approach is the syntactic approach. In the syntactic approach,...

Robotics
  • Language: en

Robotics

None

Pattern Recognition and Machine Vision
  • Language: en
  • Pages: 481

Pattern Recognition and Machine Vision

In recent years, there has been a growing interest in the fields of pattern recognition and machine vision in academia and industries. New theories have been developed with new technology and systems designs in both hardware and software. They are widely applied to our daily life to solve real problems in diverse areas such as science, engineering, agriculture, e-commerce, education, robotics, government, medicine, games and animation, medical imaging analysis and diagnosis, military, and national security. The foundation of this field can be traced back to the late Prof. King-Sun Fu, one of the founding fathers of pattern recognition, who, with visionary insight, founded the International A...

Handbook of Pattern Recognition and Computer Vision
  • Language: en
  • Pages: 1045

Handbook of Pattern Recognition and Computer Vision

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference.

Memorial Tributes
  • Language: en
  • Pages: 382

Memorial Tributes

None

Syntactic and Structural Pattern Recognition
  • Language: en
  • Pages: 568

Syntactic and Structural Pattern Recognition

This book is currently the only one on this subject containing both introductory material and advanced recent research results. It presents, at one end, fundamental concepts and notations developed in syntactic and structural pattern recognition and at the other, reports on the current state of the art with respect to both methodology and applications. In particular, it includes artificial intelligence related techniques, which are likely to become very important in future pattern recognition.The book consists of individual chapters written by different authors. The chapters are grouped into broader subject areas like “Syntactic Representation and Parsing”, “Structural Representation a...

Pattern Recognition
  • Language: en
  • Pages: 518

Pattern Recognition

None

Grammatical Inference
  • Language: en
  • Pages: 432

Grammatical Inference

The problem of inducing, learning or inferring grammars has been studied for decades, but only in recent years has grammatical inference emerged as an independent field with connections to many scientific disciplines, including bio-informatics, computational linguistics and pattern recognition. This book meets the need for a comprehensive and unified summary of the basic techniques and results, suitable for researchers working in these various areas. In Part I, the objects of use for grammatical inference are studied in detail: strings and their topology, automata and grammars, whether probabilistic or not. Part II carefully explores the main questions in the field: What does learning mean? How can we associate complexity theory with learning? In Part III the author describes a number of techniques and algorithms that allow us to learn from text, from an informant, or through interaction with the environment. These concern automata, grammars, rewriting systems, pattern languages or transducers.

Introduction to Artificial Intelligence
  • Language: en
  • Pages: 316

Introduction to Artificial Intelligence

  • Type: Book
  • -
  • Published: 2016-08-31
  • -
  • Publisher: Springer

In the chapters in Part I of this textbook the author introduces the fundamental ideas of artificial intelligence and computational intelligence. In Part II he explains key AI methods such as search, evolutionary computing, logic-based reasoning, knowledge representation, rule-based systems, pattern recognition, neural networks, and cognitive architectures. Finally, in Part III, he expands the context to discuss theories of intelligence in philosophy and psychology, key applications of AI systems, and the likely future of artificial intelligence. A key feature of the author's approach is historical and biographical footnotes, stressing the multidisciplinary character of the field and its pioneers. The book is appropriate for advanced undergraduate and graduate courses in computer science, engineering, and other applied sciences, and the appendices offer short formal, mathematical models and notes to support the reader.