You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines
This book presents tools and techniques for descriptive, predictive, and prescriptive analytics applicable across multiple domains. The author first covers core descriptive and inferential statistics for analytics and then enhances numerical statistical techniques with symbolic artificial intelligence and machine learning techniques for richer predictive and prescriptive analytics. Through many examples and challenging case studies from a variety of fields, practitioners easily see the connections to their own problems and can then formulate their own solution strategies.
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely availa...
READUP BUILDUP. Thync is the third volume of α- instant readings put up by Florentin Smarandache. Although the style of the reading logs is uniform in the three volumes so far (rough and ready, kernel-extracting, absence of any secondary remarks, and thus masking the author-summarizator), this one address only technical issues from two topics of interest for the author (information fusion / data mining), unlike in previous eclectic books.
Ruslan Mitkov's highly successful Oxford Handbook of Computational Linguistics has been substantially revised and expanded in this second edition. Alongside updated accounts of the topics covered in the first edition, it includes 17 new chapters on subjects such as semantic role-labelling, text-to-speech synthesis, translation technology, opinion mining and sentiment analysis, and the application of Natural Language Processing in educational and biomedical contexts, among many others. The volume is divided into four parts that examine, respectively: the linguistic fundamentals of computational linguistics; the methods and resources used, such as statistical modelling, machine learning, and corpus annotation; key language processing tasks including text segmentation, anaphora resolution, and speech recognition; and the major applications of Natural Language Processing, from machine translation to author profiling. The book will be an essential reference for researchers and students in computational linguistics and Natural Language Processing, as well as those working in related industries.
Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents
This handbook provides a thorough overview of the current state of knowledge in this area. The first part of the book includes nine surveys and tutorials on the principal data mining techniques that have been applied in education. The second part presents a set of 25 case studies that give a rich overview of the problems that EDM has addressed. With contributions by well-known researchers from a variety of fields, the book reflects the multidisciplinary nature of the EDM community. It helps education experts understand what types of questions EDM can address and helps data miners understand what types of questions are important to educational design and educational decision making.
A new approach to distributed large-scale data mining, service-oriented knowledge discovery extracts useful knowledge from today’s often unmanageable volumes of data by exploiting data mining and machine learning distributed models and techniques in service-oriented infrastructures. Service-Oriented Distributed Knowledge Discovery presents techniques, algorithms, and systems based on the service-oriented paradigm. Through detailed descriptions of real software systems, it shows how the techniques, models, and architectures can be implemented. The book covers key areas in data mining and service-oriented computing. It presents the concepts and principles of distributed knowledge discovery a...
Covering research at the frontier of this field, Privacy-Aware Knowledge Discovery: Novel Applications and New Techniques presents state-of-the-art privacy-preserving data mining techniques for application domains, such as medicine and social networks, that face the increasing heterogeneity and complexity of new forms of data. Renowned authorities
This book constitutes the refereed proceedings of the 12th Portuguese Conference on Artificial Intelligence, EPIA 2005, held in Covilhã, Portugal in December 2005 as nine integrated workshops. The 58 revised full papers presented were carefully reviewed and selected from a total of 167 submissions. In accordance with the nine constituting workshops, the papers are organized in topical sections on general artificial intelligence (GAIW 2005), affective computing (AC 2005), artificial life and evolutionary algorithms (ALEA 2005), building and applying ontologies for the semantic Web (BAOSW 2005), computational methods in bioinformatics (CMB 2005), extracting knowledge from databases and warehouses (EKDB&W 2005), intelligent robotics (IROBOT 2005), multi-agent systems: theory and applications (MASTA 2005), and text mining and applications (TEMA 2005).