You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Here, authors from academia and practice provide practitioners, scientists and graduates with basic methods and paradigms, as well as important issues and trends across the spectrum of parallel and distributed processing. In particular, they cover such fundamental topics as efficient parallel algorithms, languages for parallel processing, parallel operating systems, architecture of parallel and distributed systems, management of resources, tools for parallel computing, parallel database systems and multimedia object servers, as well as the relevant networking aspects. A chapter is dedicated to each of parallel and distributed scientific computing, high-performance computing in molecular sciences, and multimedia applications for parallel and distributed systems.
This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space – Time – Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian mani...
Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type. The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The bo...
* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow. * Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.
This book is the result of a joint Gennan-Polish project which has been partially sup ported by the Committee for Scientific Research 1 and the Deutsche Forschungsge meinschaft2. We appreciate the help of both institutions. The planning and preparation of the manuscript was an iterative and rather lengthy process which we had to stop at a certain stage, but it does not mean that we were fully satisfied with the output. Thus, comments and improvements will be appreciated. In the meantime we would like to thank many colleagues who already discussed with us different topics presented in the book. We are not able to list all of them but we would like to express our special gratitude toward Peter Brucker, Gerd Finke, Adam Janiak, Wieslaw Kubiak, Kathryn Stecke, and Dominique de Werra. As to the technical help in preparing the manuscript our thanks are due to Barbara Blarewicz, Brigitte Ecker, Maria Kaminska, and Brigitte Sand, especially for their typing efforts.
Mark Vishik was one of the prominent figures in the theory of partial differential equations. His ground-breaking contributions were instrumental in integrating the methods of functional analysis into this theory. The book is based on the memoirs of his friends and students, as well as on the recollections of Mark Vishik himself, and contains a detailed description of his biography: childhood in Lwów, his connections with the famous Lwów school of Stefan Banach, a difficult several year long journey from Lwów to Tbilisi after the Nazi assault in June 1941, going to Moscow and forming his own school of differential equations, whose central role was played by the famous Vishik Seminar at th...
Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. The text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in variational techniques and nonlinear analysis applied to Hamiltonian PDEs will find inspiration in the book.
The authors are renowned mathematicians; their presentations cover a wide range of topics. From compact discs to the stock exchange, from computer tomography to traffic routing, from electronic money to climate change, they make the "math inside" understandable and enjoyable.
This book constitutes the refereed proceedings of 11 IPPS/SPDP '98 Workshops held in conjunction with the 13th International Parallel Processing Symposium and the 10th Symposium on Parallel and Distributed Processing in San Juan, Puerto Rico, USA in April 1999. The 126 revised papers presented were carefully selected from a wealth of papers submitted. The papers are organised in topical sections on biologically inspired solutions to parallel processing problems: High-Level Parallel Programming Models and Supportive Environments; Biologically Inspired Solutions to Parallel Processing; Parallel and Distributed Real-Time Systems; Run-Time Systems for Parallel Programming; Reconfigurable Architectures; Java for Parallel and Distributed Computing; Optics and Computer Science; Solving Irregularly Structured Problems in Parallel; Personal Computer Based Workstation Networks; Formal Methods for Parallel Programming; Embedded HPC Systems and Applications.