You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independ...
Most researchers to date in artificial intelligence has been based on the knowledge representation hypothesis, that is, the assumption that in any artificial intelligence (AI) programme there is a separate module which represents the information that the programme has about the world. As a result, a number of so-called knowlege representation formalisms have been developed for representing this kind of information in a computer.
Knowledge representation is an important task in understanding how humans think and learn. Although many representation models or cognitive models have been proposed, such as expert systems or knowledge graphs, they cannot represent procedural knowledge, i.e., dynamic knowledge, in an efficient way. This book introduces a new knowledge representation model called MDATA (Multi-dimensional Data Association and inTelligent Analysis). By modifying the representation of entities and relations in knowledge graphs, dynamic knowledge can be efficiently described with temporal and spatial characteristics. The MDATA model can be regarded as a high-level temporal and spatial knowledge graph model, whic...
This volume is based on the International Conference Logic at Work, held in Amsterdam, The Netherlands, in December 1992. The 14 papers in this volume are selected from 86 submissions and 8 invited contributions and are all devoted to knowledge representation and reasoning under uncertainty, which are core issues of formal artificial intelligence. Nowadays, logic is not any longer mainly associated to mathematical and philosophical problems. The term applied logic has a far wider meaning, as numerous applications of logical methods, particularly in computer science, artificial intelligence, or formal linguistics, testify. As demonstrated also in this volume, a variety of non-standard logics gained increased importance for knowledge representation and reasoning under uncertainty.
This series will include monographs and collections of studies devoted to the investigation and exploration of knowledge, information, and data processing systems of all kinds, no matter whether human, (other) ani mal, or machine. Its scope is intended to span the full range of interests from classical problems in the philosophy of mind and philosophical psy chology through issues in cognitive psychology and sociobiology (concerning the mental capabilities of other species) to ideas related to artificial intelli gence and computer science. While primary emphasis will be placed upon theoretical, conceptual, and epistemological aspects of these problems and domains, empirical, experimental, an...
Machine learning has become a rapidly growing field of Artificial Intelligence. Since the First International Workshop on Machine Learning in 1980, the number of scientists working in the field has been increasing steadily. This situation allows for specialization within the field. There are two types of specialization: on subfields or, orthogonal to them, on special subjects of interest. This book follows the thematic orientation. It contains research papers, each of which throws light upon the relation between knowledge representation, knowledge acquisition and machine learning from a different angle. Building up appropriate representations is considered to be the main concern of knowledge acquisition for knowledge-based systems throughout the book. Here machine learning is presented as a tool for building up such representations. But machine learning itself also states new representational problems. This book gives an easy-to-understand insight into a new field with its problems and the solutions it offers. Thus it will be of good use to both experts and newcomers to the subject.
Knowledge representation is at the very core of a radical idea for understanding intelligence. Instead of trying to understand or build brains from the bottom up, its goal is to understand and build intelligent behavior from the top down, putting the focus on what an agent needs to know in order to behave intelligently, how this knowledge can be represented symbolically, and how automated reasoning procedures can make this knowledge available as needed. This landmark text takes the central concepts of knowledge representation developed over the last 50 years and illustrates them in a lucid and compelling way. Each of the various styles of representation is presented in a simple and intuitive...
Humans have an extraordinary capability to combine different types of information in a single meaningful interpretation. The quickness with which interpretation processes evolve suggests the existence of a uniform procedure for all domains. In this book the authors suggest that such a procedure can be found. They concentrate on the introduction of a theory of interpretation, and they define a model that enables a meaningful representation of knowledge, based on a dynamic view of information and a cognitive model of human information processing. The book consists of three parts. The first part focuses on the properties of signs and sign interpretation; in the second part the authors introduce...
In Artificial Intelligence, it is often said that the representation of knowledge is the key to the design of robust intelligent systems. In one form or another the principles of Knowledge Representation are fundamental to work in natural language processing, computer vision, knowledge-based expert systems, and other areas. The papers reprinted in this volume have been collected to allow the reader with a general technical background in AI to explore the subtleties of this key subarea. These seminal articles, spanning a quarter-century of research, cover the most important ideas and developments in the representation field. The editors introduce each paper, discuss its relevance and context, and provide an extensive bibliography of other work. "Readings in Knowledge Representation" is intended to serve as a complete sourcebook for the study of this crucial subject.
The papers collected in this book cover a wide range of topics in asymptotic statistics. In particular up-to-date-information is presented in detection of systematic changes, in series of observation, in robust regression analysis, in numerical empirical processes and in related areas of actuarial sciences and mathematical programming. The emphasis is on theoretical contributions with impact on statistical methods employed in the analysis of experiments and observations by biometricians, econometricians and engineers.