You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Updated discussion of the processing, microstructure, properties, and applications of fibers such as polymers, metals, ceramics and glass.
Includes numerous examples and problems for student practice, this textbook is ideal for courses on the mechanical behaviour of materials taught in departments of mechanical engineering and materials science.
In the last few years, a significant increase in applications of MMCs has taken place, particularly in the areas of automotive, aerospace, electronics, and recreation. These include continuous fiber reinforced MMCs for cables in power transmission, high temperature superconducting wires, particulate MMCs in civilian aircraft and automotive applications, and high volume fraction, high thermal conductivity substrates for electronic packaging. Nevertheless, as with any novel material systems, there is a lack of fundamental understanding on the part of practicing engineers and designers. This book would seek to address these issues, in a thorough and cohesive manner, as well as to provide students and scientists with a basic understanding of MMCs. This book will emphasize the synergistic relationships among processing, structure, and properties of metal matrix composites.
This new updated edition provides an unrivaled overview of fibrous materials, their processing, microstructure, properties, and applications. The entire range of fibrous materials is discussed in depth, from natural polymeric fibers such as silk and vegetable fibers, and synthetic polymeric fibers such as aramid and polyethylene, to metallic fibers including steel, tungsten, Nb-Ti, and Nb3Sn, ceramic fibers such as alumina and silicon carbide, and carbon and glass fibers. Fundamental concepts are explained clearly and concisely along with detail on applications in areas including medicine, aerospace, optical communications, and recycling. Significant recent advances are also covered, with new information on the electrospinning of fibers, carbon nanotubes, and photonic bandgap fibers, and detail on advances made in the production and control of microstructure in high stiffness and high strength fibers. Accessibly written and unrivaled in scope, this is an ideal resource for students and researchers in materials science, physics, chemistry, and engineering.
Materials science and engineering (MS&E) is by its very nature an inter disciplinary activity. Researchers from a wide variety of disciplines, metal lurgy, ceramics, physics, chemistry, mechanics, electrical and electronic engineering, etc. can and do participate in the MS&E activities. The need and desirability of such an interdisciplinary effort is understandable inas much as advanced or high-performance materials are critical for any of the modern industries. It is almost a given axiom that progress in any field (energy, building materials, transportation, electronics, aerospace, electric power, consumer products, etc.) depends on the availability of suitable In this regard, let me quote ...
Focusing on the relationship between structure and properties, this is a well-balanced treatment of the mechanics and the materials science of composites, while not neglecting the importance of processing. This updated second edition contains new chapters on fatigue and creep of composites, and describes in detail how the various reinforcements, the materials in which they are embedded, and of the interfaces between them, control the properties of the composite materials at both the micro- and macro-levels. Extensive use is made of micrographs and line drawings, and examples of practical applications in various fields are given throughout the book, together with extensive references to the literature. Intended for use in graduate and upper-division undergraduate courses, this book will also prove a useful reference for practising engineers and researchers in industry and academia.
This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.
Describes the production and properties of fibrous materials, including important advances in the manufacture of high stiffness and high strength fibres.
The fourth edition of Krishan Chawla's widely used textbook, Composite Materials, offers integrated and completely up-to-date coverage of composite materials. The book focuses on the triad of processing, structure, and properties, while providing a well-balanced treatment of the materials science and mechanics of composites. In this edition of Composite Materials, revised and updated throughout, increasing use of composites in industry (especially aerospace and energy) and new developments in the field are highlighted. New material on the advances in non-conventional composites (which covers polymer, metal and ceramic matrix nanocomposites), self-healing composites, self-reinforced composites, biocomposites and laminates made of metals and polymer matrix composites is included. Examples of practical applications in various fields are provided throughout the book, with extensive references to the literature. The book is intended for use in graduate and upper-division undergraduate courses and as a reference for the practicing engineers and researchers in industry and academia.
This textbook describes the physics of the plastic deformation of solids at high temperatures. It is directed at geologists or geophysicists interested in the high-temperature behaviour of crystals who wish to become acquainted with the methods of materials science in so far as they are useful to earth scientists. It explains the most important models and recent experimental results without losing the reader in the primary literature of materials science. In turn the book deals with the essential solid-state physics; thermodynamics and hydrostatics of creep; creep models and their applications in the geological sciences; diffusion creep; superplastic deformation and deformation enhanced by phase transformations. Five concluding chapters give experimental results for metals, ceramics and minerals. There are extensive bibliographies to aid further study.