You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Serge Lang is not only one of the top mathematicians of our time, but also an excellent writer. He has made innumerable and invaluable contributions in diverse fields of mathematics and was honoured with the Cole Prize by the American Mathematical Society as well as with the Prix Carriere by the French Academy of Sciences. Here, 83 of his research papers are collected in four volumes, ranging over a variety of topics of interest to many readers.
This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis cons...
This book provides an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and on Drinfeld's recent fundamental contributions. The first part presents in detail the quantum groups attached to SL[subscript 2] as well as the basic concepts of the theory of Hopf algebras. Part Two focuses on Hopf algebras that produce solutions of the Yang-Baxter equation, and on Drinfeld's quantum double construction. In the following part we construct isotopy invariants of knots and links in the three-dimensional Euclidean space, using the language of tensor categories. The last part is an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations, culminating in the construction of Kontsevich's universal knot invariant.
Surveys developments in the representation theory of finite dimensional algebras and related topics in seven papers illustrating different techniques developed over the recent years. For graduate students and researchers with a background in commutative algebra, including rings, modules, and homological algebra. Suitable as a text for an advanced graduate course. No index. Member prices are $31 for institutions and $23 for individuals, and are available to members of the Canadian Mathematical Society. Annotation copyrighted by Book News, Inc., Portland, OR
None