You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physi...
Numerical Methods for Scientists and Engineers: With Pseudocodes is designed as a primary textbook for a one-semester course on Numerical Methods for sophomore or junior-level students. It covers the fundamental numerical methods required for scientists and engineers, as well as some advanced topics which are left to the discretion of instructors. The objective of the text is to provide readers with a strong theoretical background on numerical methods encountered in science and engineering, and to explain how to apply these methods to practical, real-world problems. Readers will also learn how to convert numerical algorithms into running computer codes. Features: Numerous pedagogic features ...
Summarizes the state of the art in this area of research.
The SEWM2002 workshop, like the ones before, brought together theoretical physicists working on thermal field theory and, more generally, on (resummation) techniques for deriving effective actions based on QCD and the electroweak standard model of elementary particle physics, but describing nonstandard situations. The focus was on the temperature/chemical potential phase diagram of QCD, considered both analytically and with lattice gauge theory, equilibrium and nonequilibrium thermo field theory, and on heavy ion physics. Other related topics were OC small x physicsOCO in QCD, electroweak baryogenesis, inflation, and dark energy in the early universe."
This volume summarizes our contemporary understanding of the deconfinement transition in QCD at finite temperature and chemical potential. Questions as to whether a quark-gluon plasma exists in the interior of dense astrophysical objects or which bound-state signals have to be studied in order to unambiguously detect the QCD phase transition(s) in future heavy-ion collision programmes at RHIC and LHC are addressed. Progress in answering these questions requires a fusion of lattice QCD with other nonperturbative approaches and low-energy effective models for QCD. Experts in these fields present in the book their methods and their results in understanding the deconfinement phenomenon.
These notes give an introduction to the description of hadrons, i.e., mesons and baryons, within a quark model based on a chirally invariant quantum field theory. Emphasis is put on a didactic approach intended for graduate students with some background on functional integral techniques. Starting from QCD a motivation of a specific form of the effective quark interaction is given. Functional integral bosonization leads to a theory describing successfully meson properties. It possesses solitonic solutions which are identified as baryons. Via functional integral techniques a Faddeev equation for baryons describing them as bound states of a diquark and a quark is derived. Finally, a unification of these two complementary pictures of baryons is proposed.
During the week of 3-8 June 1996, approximately 83 theoretical (and 2 experimental) physicists interested in the current problems of Quantum Chromodynamics (QCD) gathered at the American University of Paris, France, to present and discuss a total of 59 papers on Collisions, Confinement, and Chaos in QCD. Each of these three subfields filled at least two half-day sessions; and another four half-day sessions were devoted to miscellaneous and interesting papers on Quantum Field Theory (QFT), and especially on the proper construction of high-energy scattering amplitudes.
The problem of quark confinement is one of the classic unsolved problems of particle physics and is fundamental to our understanding of the physics of the strong interaction and the behaviour of non-Abelian gauge theories in general. The confinement problem is also are area in which concepts from topology and techniques of computational physics both find important applications. This volume contains a snapshot of current research in this field as of January 2002. Particular emphasis is placed on the role of topological field configurations such as centre vortices and monopoles in proposed confinement mechanisms. Other topics covered include colour superconductivity, instantons and chiral symmetry breaking, matrix models and the construction of chiral gauge theories. Readership: Research scientists and graduate students of high energy physics and nuclear physics.
The International Nuclear Physics Conference, held every three years, is the most pretigeous meeting of nuclear physics. Its programme covers the whole range of nuclear physics and some application, such as relativistic nuclear collisions, mesons and baryons in nuclei, hadron structure and quarks in nuclei, formation and properties of hot nuclei, nuclear reactions at low and intermediate energy, nuclear structure, radioactive nuclear beams, nuclear astrophysics, fundamental interaction and symmetries, experimental technique and new facilities, and applied nuclear physics.The proceedings is a collection of all invited talks on the plenary and parallel sessions. Presented by the leading scientists in their fields, these talks summarized the most recent progress and future prospects in all the aspects of nuclear physics.
The purpose of the School and Workshop was to study recent topics in QCD and hadron physics from various points of view. The subjects included perturbative and nonperturbative aspects of QCD, chiral effective theory in hadron physics and high temperature and density nuclear matter physics.Another purpose was to enhance communications and collaborations among researchers in the Asia and Oceania region.