You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Enthusiasm for research on the quantum Hall effect (QHE) is unbounded. The QHE is one of the most fascinating and beautiful phenomena in all branches of physics. Tremendous theoretical and experimental developments are still being made in this sphere. Composite bosons, composite fermions and anyons were among distinguishing ideas in the original edition.In the 2nd edition, fantastic phenomena associated with the interlayer phase coherence in the bilayer system were extensively described. The microscopic theory of the QHE was formulated based on the noncommutative geometry. Furthermore, the unconventional QHE in graphene was reviewed, where the electron dynamics can be treated as relativistic...
Owing to new physical, technological, and device concepts of low-dimensionalelectronic systems, the physics and fabrication of quasi-zero, one- and two-dimensional systems are rapidly growing fields. The contributions presented in this volume cover results of nanostructure fabrication including recently developed techniques, for example, tunneling probe techniques and molecular beam epitaxy, quantum transport including the integer and fractional quantum Hall effect, optical and transport studies of the two-dimensional Wigner solid, phonon studies of low-dimensional systems, and Si/SiGe heterostructures and superlattices. To the readers new in the field this volume gives a comprehensive introduction and for the experts it is an update of their knowledge and a great help for decisions about future research activities.
This review volume consists of scientific articles representing the frontier and most advanced progress in the field of semiconductor physics and lattice dynamics.
High magnetic fields have, for a long time, been an important tool in the investigation of the electronic structure of semiconductors. In recent yearsstudies of heterostructures and superlattices have predominated, and this emphasis is reflected in these proceedings. The contributions concentrate on experiments using transport and optical methods, but recent theoretical developments are also covered. Special attention is paid to the quantum Hall effect, including the problem of edge currents, the influence of contacts, and Wigner condensation in the fractional quantum Hall effect regime. The 27 invited contributions by renowned expertsprovide an excellent survey of the field that is complemented by numerous contributed papers.
The Poincaré Seminar is held twice a year at the Institut Henri Poincaré in Paris. The goal of this seminar is to provide up-to-date information about general topics of great interest in physics. Both the theoretical and experimental results are covered, with some historical background. Particular care is devoted to the pedagogical nature of the presentation. This volume is devoted to the quantum Hall effect. After a historical and general presentation by Nobel prize winner Klaus von Klitzing, discoverer of this effect, the volume proceeds with reviews on the mathematics and physics of both the integer and fractional case. It includes up to date presentations of the tunneling and metrology experiments related to the quantum Hall effect. It will serve the community of physicists and mathematicians at professional or graduate student level.
This book explains the calculations of Laughlin and Schrieffer and shows how they are modified when the magnetic length is treated properly. The attachment of flux quanta to the electron has been discussed at length and experimental reports are re-examined in the light of variable magnetic length. The angular momentum theory of the Quantum Hall Effect explains the experimental data as is well based on theoretical grounds. An effort is made to compromise the flux-attached electron theory with the angular momentum theory which shows that some of the composite fermions become bosons. The Quantum Hall effect is explained on the basis of angular momentum theory. The importance of the negative spin has been discussed. The considerable amount of literature is reviewed.
The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.
This volume represents the Proceedings of the Oji International Seminar on the Application of High Magnetic Fields in the Physics of Semiconductors and Magnetic Materials, which was held at the Hakone Kanko Hotel, Hakone, Japan, from 10 to 13 September 1980. The Seminar was organized as a related meeting to the 15th International Conference on the Physics of Semiconductors which was held in Kyoto between 1 and 5 September 1980. From 12 countries, 77 de legates participated in the Seminar. This Seminar was originally planned to be a formal series of International Conferences on the Application of High Magnetic Fields in the Physics of Semiconductors, which was first started by Professor G. La...
This book is aimed at a large audience: scientists, engineers, professors and students wise enough to keep a critical stance whenever confronted with the chilling dogmas of contemporary physics. Readers will find a tantalizing amount of material calculated to nurture their thoughts and arouse their suspicion, to some degree at least, on the so-called validity of today's most celebrated physical theories. Contents: Wave Meaning of the Special Relativity Theory; Change of Reference Frame; Relativistic and Classical Mechanics; Experimental Tests of Special Relativity; Partial Differential Equations of Second Order; The Wave Packet Concept; Electromagnetism; Electromagnetic Induction; Amp re and Lorentz Forces; The Li(r)nardOCoWiechert Potential; Analysis of the Electromagnetic Field; Photonics Versus Electromagnetism; Radiation of Extended Sources; The Green Formulation; Wave Extinction in a Dielectric; Plasma Equation. Readership: Students and academics in advanced physics."