You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
While it is still a mystery of how a low-energy-density sound wave can concentrate enough energy in a small enough volume to cause the emission of light, research in acoustic cavitation and sonoluminescence has lead to plausible theories in which the source of light can be experimentally sustained. It has also lead to promising applications, such a
Despite the fact that chemical applications of ultrasound are now widely acknowledged, a detailed presentation of inorganic systems covering nano-particles, catalysis, aqueous chemistry of metallic solutions and their redox characteristics, both from a theoretical and experimental perspective has eluded researchers of this field. Theoretical and Experimental Sonochemistry Involving Inorganic Systems fills this gap and presents a concise and thorough review of this fascinating area of Sonochemistry in a single volume.
Ultrafine bubbles (UFBs) are gas-filled bubbles with a diameter smaller than 1 μm. They are sometimes called bulk nanobubbles because these are not on a solid surface but inside a bulk liquid (water). They are already being used in commercial processes such as cleaning and plant cultivation. However, many mysteries still exist with respect to UFBs, such as mechanisms of stability, OH radical formation, and biological and medical effects. This is the first book on UFBs that reviews research done on them. It is helpful for those interested in the fundamentals of this emerging field and its applications, including cleaning, biological, medical, and dental students and researchers.
Statistical physics is one of the fundamental branches of modern science. It provides a useful tool constructing a bridge from the microscopic to the macroscopic world. In the last forty years, most of the extensive applications have been made successfully in a variety of fields, such as physics, chemistry, biology, materials science, and even astronomy, where many new concepts and methods have been developed.The purpose of this meeting is to provide an opportunity for young researchers in experimental, theoretical and computational fields to communicate with one another using the common language of statistical physics, and thus foster many-body interactions among themselves.
As nanomaterials and their end products occupy the pinnacle position of consumer markets, it becomes vital to analyze their generation processes. One of the green chemistry principles underlines the need for unusual energy sources to generate them. Utilizing the extreme energy from the collapse of cavitation bubbles, generated by either ultrasound
The subjects of green and sustainability have never been more important, as governments around the world wrestle with the problem of how to protect the planet from the damage being caused to the environment. In this regarding author writing this book on A Logical Approach to Green and Sustainable Chemistry which is divided into 10 chapters and journey of book start from Introduction to Green and Sustainable Chemistry, after this discussing about the Green Reagent, Green Solvent, Green Catalyst, Biocatalyst, Nano Chemistry , Ultra Sound Assisted Synthesis, Microwave Synthesis, Polymer Supported Catalysis (PTC) and Green laboratory methods of Synthesis. All the chapters deal with the most up-to-date findings. The book provides a valuable overview of the latest developments in field of Green and Sustainable Chemistry.
Energy Aspects of Acoustic Cavitation and Sonochemistry: Fundamentals and Engineering covers topics ranging from fundamental modeling to up-scaled experiments. The book relates acoustic cavitation and its intrinsic energy balance to macroscopic physical and chemical events that are analyzed from an energetic perspective. Outcomes are directly projected into practical applications and technological assessments covering energy consumption, thermal dissipation, and energy efficiency of a diverse set of applications in mixed phase synthesis, environmental remediation and materials chemistry. Special interest is dedicated to the sonochemical production of hydrogen and its energetic dimensions. Du...
Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the phenomena are simply, but comprehensively presented. In addition, potential industrial and medical applications of ...
None