You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This textbook provides an introduction to general relativity for mathematics undergraduates or graduate physicists. After a review of Cartesian tensor notation and special relativity the concepts of Riemannian differential geometry are introducted. More emphasis is placed on an intuitive grasp of the subject and a calculational facility than on a rigorous mathematical exposition. General relativity is then presented as a relativistic theory of gravity reducing in the appropriate limits to Newtonian gravity or special relativity. The Schwarzchild solution is derived and the gravitational red-shift, time dilation and classic tests of general relativity are discussed. There is a brief account of gravitational collapse and black holes based on the extended Schwarzchild solution. Other vacuum solutions are described, motivated by their counterparts in linearised general relativity. The book ends with chapters on cosmological solutions to the field equations. There are exercises attached to each chapter, some of which extend the development given in the text.
This outstanding collection of articles includes papers presented at the Fields Institute, Toronto, as part of the Thematic Program in Quantitative Finance that took place in the first six months of the year 2010. The scope of the volume is very broad, with papers on foundational issues in mathematical finance, papers on computational finance, and papers on derivatives and risk management. Many of the articles contain path-breaking insights that are relevant to the developing new order of post-crisis financial risk management.
This volume contains invited papers presented at the 15th Dundee Biennial Conference on Numerical Analysis held at the University of Dundee in June of 1993. The Dundee Conferences are important events in the numerical analysis calendar, and the papers published here represent accounts of recent research work by leading numerical analysts covering a wide range of fields of interest. The book is a valuable guide to the direction of current research in many areas of numerical analysis. It will be of particular interest to graduate students and research workers concerned with the theory and application of numerical methods for solving ordinary and partial differential equations.
Including previously unpublished, original research material, this comprehensive book analyses topics of fundamental importance in theoretical fluid mechanics. The five papers appearing in this volume are centred around the mathematical theory of the Navier-Stokes equations (incompressible and compressible) and certain selected non-Newtonian modifications.
The papers in this volume address the state-of-the-art and future directions in applied mathematics in both scattering theory and biomedical technology. A workshop held in Metsovo, Greece during the summer of 1997 brought together some of the world's foremose experts in the field with researchers working in Greece. Sixteen of the contributed papers appear in this volume. All the papers give new directions, and in several cases, the most important scientific contributions in the fields.
This volume presents papers from the conferences given at the University of Metz in 1992, and presents some recent advances in various important domains of partial differential equations and applied mathematics. A special attempt has been made to make this work accessible to young researchers and non-specialists.
This Research Note aims to provide an insight into recent developments in the theory of pattern formation. In the last decade there has been considerable progress in this field, both from a theoretical and a practical point of view. Recent mathematical developments concern the study of the nonlinear stability of systems at near-critical conditions by an appropriate system of modulation equations. The complexity of the original problem can be reduced drastically by this approximation. Moreover, it provides unifying point of view for a wide range of problems. New applications of the theory arise in a multitude of scientific areas such as hydrodynamics, reaction-diffusion problems, oceanography...
Clifford analysis has blossomed into an increasingly relevant and fashionable area of research in mathematical analysis-it fits conveniently at the crossroads of many fundamental areas of research, including classical harmonic analysis, operator theory, and boundary behavior. This book presents a state-of-the-art account of the most recent developments in the field of Clifford analysis with contributions by many of the field's leading researchers.
Module theory is an important tool for many different branches of mathematics, as well as being an interesting subject in its own right. Within module theory, the concept of injective modules is particularly important. Extending modules form a natural class of modules which is more general than the class of injective modules but retains many of its
Much progress has been made recently in a number of areas by the application of new geometrical methods arising from advances in singularity theory. This collection of invited papers presented at the 3rd International Workshop on Real and Complex Singularities, held in August 1994 at ICMSC-USP (Sao Carlos), documents the geometric study of singularities and its applications.