Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Foundations of Deep Reinforcement Learning
  • Language: en
  • Pages: 629

Foundations of Deep Reinforcement Learning

The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games—such as Go, Atari games, and DotA 2—to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software lib...

Smart and Sustainable Intelligent Systems
  • Language: en
  • Pages: 576

Smart and Sustainable Intelligent Systems

The world is experiencing an unprecedented period of change and growth through all the electronic and technilogical developments and everyone on the planet has been impacted. What was once ‘science fiction’, today it is a reality. This book explores the world of many of once unthinkable advancements by explaining current technologies in great detail. Each chapter focuses on a different aspect - Machine Vision, Pattern Analysis and Image Processing - Advanced Trends in Computational Intelligence and Data Analytics - Futuristic Communication Technologies - Disruptive Technologies for Future Sustainability. The chapters include the list of topics that spans all the areas of smart intelligent systems and computing such as: Data Mining with Soft Computing, Evolutionary Computing, Quantum Computing, Expert Systems, Next Generation Communication, Blockchain and Trust Management, Intelligent Biometrics, Multi-Valued Logical Systems, Cloud Computing and security etc. An extensive list of bibliographic references at the end of each chapter guides the reader to probe further into application area of interest to him/her.

End-User Considerations in Educational Technology Design
  • Language: en
  • Pages: 423

End-User Considerations in Educational Technology Design

  • Type: Book
  • -
  • Published: 2017-06-16
  • -
  • Publisher: IGI Global

Emerging technologies have enhanced the learning capabilities and opportunities in modern school systems. To continue the effective development of such innovations, the intended users must be taken into account. End-User Considerations in Educational Technology Design is a pivotal reference source for the latest scholarly material on usability testing techniques and user-centered design methodologies in the development of technological tools for learning environments. Highlighting a range of pertinent topics such as multimedia learning, human-computer interaction, and online learning, this book is ideally designed for academics, researchers, school administrators, professionals, and practitioners interested in the design of optimized educational technologies.

Learning Deep Learning
  • Language: en
  • Pages: 1106

Learning Deep Learning

NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results "To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals." -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA "Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us." -- From the foreword by Dr. Crai...

Reinforcement Learning, second edition
  • Language: en
  • Pages: 549

Reinforcement Learning, second edition

  • Type: Book
  • -
  • Published: 2018-11-13
  • -
  • Publisher: MIT Press

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the fir...

Where Humans Meet Machines
  • Language: en
  • Pages: 317

Where Humans Meet Machines

Editors Amy Neustein and Judith A. Markowitz have recruited a talented group of contributors to introduce the next generation of natural language technologies to resolve some of the most vexing natural-language problems that compromise the performance of speech systems today. This fourteen-chapter anthology consists of contributions from industry scientists and from academicians working at major universities in North America and Europe. They include researchers who have played a central role in DARPA-funded programs and developers who craft real-world solutions for corporations. This anthology is aimed at speech engineers, system developers, computer scientists, AI researchers, and others interested in utilizing natural-language technology in both spoken and text-based applications.

Reinforcement Learning
  • Language: en
  • Pages: 408

Reinforcement Learning

Reinforcement learning (RL) will deliver one of the biggest breakthroughs in AI over the next decade, enabling algorithms to learn from their environment to achieve arbitrary goals. This exciting development avoids constraints found in traditional machine learning (ML) algorithms. This practical book shows data science and AI professionals how to learn by reinforcementand enable a machine to learn by itself. Author Phil Winder of Winder Research covers everything from basic building blocks to state-of-the-art practices. You'll explore the current state of RL, focus on industrial applications, learnnumerous algorithms, and benefit from dedicated chapters on deploying RL solutions to productio...

Foundations of Deep Reinforcement Learning
  • Language: en
  • Pages: 416

Foundations of Deep Reinforcement Learning

  • Type: Book
  • -
  • Published: 2019
  • -
  • Publisher: Unknown

The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library...

Predictive Analytics for the Modern Enterprise
  • Language: en
  • Pages: 361

Predictive Analytics for the Modern Enterprise

The surging predictive analytics market is expected to grow from $10.5 billion today to $28 billion by 2026. With the rise in automation across industries, the increase in data-driven decision-making, and the proliferation of IoT devices, predictive analytics has become an operational necessity in today's forward-thinking companies. If you're a data professional, you need to be aligned with your company's business activities more than ever before. This practical book provides the background, tools, and best practices necessary to help you design, implement, and operationalize predictive analytics on-premises or in the cloud. Explore ways that predictive analytics can provide direct input back to your business Understand mathematical tools commonly used in predictive analytics Learn the development frameworks used in predictive analytics applications Appreciate the role of predictive analytics in the machine learning process Examine industry implementations of predictive analytics Build, train, and retrain predictive models using Python and TensorFlow

Supercharged Python
  • Language: en
  • Pages: 1077

Supercharged Python

“Brian Overland makes programming simple. . . . To my amazement, his books explain complicated code clearly enough for anyone to understand.” —Art Sedighi, PhD Tapping into the full power of Python doesn’t have to be difficult. Supercharged Python is written for people who’ve learned the fundamentals of the language but want to take their skills to the next level. After a quick review of Python, the book covers: advanced list and string techniques; all the ways to handle text and binary files; financial applications; advanced techniques for writing classes; generators and decorators; and how to master packages such as Numpy (Numeric Python) to supercharge your applications! Use pro...