You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Although the focus of this textbook is on traditional thermodynamics topics, the book is concerned with introducing the thermal-fluid sciences as well. It is designed for the instructor to select topics and seamlessly combine them with material from other chapters. Pedagogical devices include: learning objectives, chapter overviews and summaries, historical perspectives, and numerous examples, questions, problems and lavish illustrations. Students are encouraged to use the National Institute of Science and Technology (NIST) online properties database.
A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters of an airfoil at high altitudes (70,000 to 100,000 ft), low Reynolds numbers (200,000 to 700,000), and high subsonic Mach numbers (0.5 to 0.65). The airfoil section lift and drag are determined from pitot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented. Several predictions of the airfoil performance are also presented. Mark Drela from the Massachusetts Institute of Technology designed the APEX-16 airfoil, using the MSES code. Two-dimensional Navier-Stokes analyses were performed by Mahidhar Tatineni and Xiaolin Zhong from the University of California, Los Angeles, and by the authors at NASA Dryden.
Computation, modeling, and simulation practices are commonplace in the STEM workplace, yet formal training embedded in disciplinary practices is not as standard in the undergraduate classroom. Teaching and Learning in STEM With Computation, Modeling, and Simulation Practices: A Guide for Practitioners and Researchers gives instructors a handbook to ensure their curriculum bridges the gap between the classroom and workplace by equipping students with computational skills and preparing them for a rewarding career in STEM. Grounded in theory and supported by fifteen years of education research at the undergraduate level, this book provides instructional, pedagogical, and assessment guidance for integrating modeling and simulation practices into the undergraduate classroom.
Presents an updated, full-color, second edition on thermodynamics, providing a structured approach to this subject and a wealth of new problems.
Discover the fundamentals and tools needed to model, design, and build efficient, clean low-carbon energy systems with this unique textbook.
Current interest in a variety of low Reynolds number applications has focused attention on the design and evaluation of efficient airfoil sections at chord Reynolds numbers from about 100,000 to about 1,000,000. These applications include remotely piloted vehicles (RPVs) at high altitudes, sailplanes, ultra-light man-carrying/man powered aircraft, mini-RPVs at low altitudes and wind turbines/propellers. The purpose of this conference was to bring together those researchers who have been active in areas closely related to this subject. All of the papers presented are research type papers. Main topics are: Airfoil Design and Analysis, Computational Studies, Stability and Transition, Laminar Separation Bubble, Steady and Unsteady Wind Tunnel Experiments and Flight Experiments.