You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The increasing availability and decreasing costs of 3D printing and bioprinting technologies are expanding opportunities to meet medical needs. 3D Printing and Bioprinting for Pharmaceutical and Medical Applications discusses emerging approaches related to these game-changer technologies in such areas as drug development, medical devices, and bioreactors. Key Features: Offers an overview of applications, the market, and regulatory analysis Analyzes market research of 3D printing and bioprinting technologies Reviews 3D printing of novel pharmaceutical dosage forms for personalized therapies and for medical devices, as well as the benefits of 3D printing for training purposes Covers 3D bioprin...
With the emergence of additive manufacturing, mass customization of biomaterials for complex tissue regeneration and targeted drug delivery applications is possible. This book emphasizes the fundamental concepts of biomaterials science, their structure–property relationships and processing methods, and biological responses in biomedical engineering. It focuses on recent advancements in biomedical applications, such as tissue engineering, wound healing, drug delivery, cancer treatments, bioimaging, and theranostics. This book: Discusses design chemistry, modification, and processing of biomaterials Describes the efficacy of biomaterials at various scales for biological response and drug delivery Demonstrates technological advances from conventional to additive manufacturing Covers future of biofabrication and customized medical devices This volume serves as a go-to reference on functional biomaterials and is ideal for multi-disciplinary communities such as students and research professionals in materials science, biomedical engineering, healthcare, and medical fields.
With the recent developments in the field of advanced materials, there exists a need for a systematic summary and detailed introduction of the modeling and simulation methods for these materials. This book provides a comprehensive description of the mechanical behavior of advanced materials using modeling and simulation. It includes materials such as high-entropy alloys, high-entropy amorphous alloys, nickel-based superalloys, light alloys, electrode materials, and nanostructured reinforced composites. Reviews the performance and application of a variety of advanced materials and provides the detailed theoretical modeling and simulation of mechanical properties Covers the topics of deformation, fracture, diffusion, and fatigue Features worked examples and exercises that help readers test their understanding This book is aimed at researchers and advanced students in solid mechanics, material science, engineering, material chemistry, and those studying the mechanics of materials.
This book covers polymer 3D printing through basics of technique and its implementation. It begins with the discussion on fundamentals of new-age printing, know-how of technology, methodology of printing, and product design perspectives. It includes aspects of CAD along with uses of Slicer software, image analysis software and MATLAB® programming in 3D printing of polymers. It covers choice of polymers for printing subject to their structure–property relationship, troubleshooting during printing, and possible uses of waste plastics and other waste materials. Key Features Explores polymeric material printing and design Provides information on the potential for the transformation and manufacturing, reuse and recycling of polymeric material Includes comparison of 3D printing and injection moulding Discusses CAD design and pertinent scaling-up process related to polymers Offers basic strategies for improvement and troubleshooting of 3D printing This book is aimed at professionals and graduate students in polymer and mechanical engineering and materials science and engineering.
The presence of refractory organic compounds in wastewater is a global problem. Advanced oxidation processes, in general, and the Fenton oxidation process are alternative technologies for wastewater and water treatment. This book gives an overview of Fenton process principles, explains the main factors influencing this technology, includes applications, kinetic and thermodynamic calculations and presents a strong overview on the heterogeneous catalytic approach. It demonstrates that the iron-based heterogeneous Fenton process, including nanoparticles, a new complex solution, is highly efficient, environmentally friendly and can be suitable for wastewater treatment and industrial wastewater. ...
Nanomaterials for Energy Applications provides readers with an in-depth understanding of advanced nanomaterials and their applications in energy generation and utilization concepts. It focuses on emerging nanomaterials and applications in various energy-related fields. Describes nanomaterials for use in photovoltaic cells, solid state lighting, fuel cells, electrochemical batteries, electrochemical capacitors, superconductors, hydrogen storage, and photocatalysts. Focuses on commercial and economic aspects. Includes case studies drawn from practical research. This book is aimed at researchers, advanced students, and practicing engineers in the disciplines of materials, mechanical, electrical, and related fields of engineering.
Written especially for the pharmaceutical industry professional, this book addresses each part of the life-cycle of engineering change control. It covers issues in the EU and US and describes the operational requirements and responsibilities that ensure change controls are effectively applied and recorded. Providing guidance on how to demonstrate that a change control system is working, the book includes chapters on computer validation, customization of the change process to each project's needs, and case histories and anecdotes illustrate key points and provide a basis for change control training. It gives readers a toolbox for ensuring that adequate controls are implemented.
The first systematic overview of this key technique since the early 1990s, this authoritative reference is the only handbook available to include all recent developments. The author draws on his wide-ranging experience in both academia and industry to systematically cover all types of enzyme immobilization methods, such as adsorption-based and covalent immobilization, as well as enzyme entrapment and encapsulation. Throughout, a careful review of materials and techniques for the generation of functional immobilized enzymes benefits both developers and users of carrier-bound enzymes. A must for biotechnologists, biochemists and preparative chemists using enzymes in their daily work.