You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume documents an important event in the World Year of Physics 2005 and a continuation of the traditional international summer schools that have taken place in Romania regularly since 1964. On one hand, the study of exotic nuclei seeks answers about the structure and interaction of unique finite quantum mechanical many-body systems. On the other, it provides data that have an impact on the understanding of the origin of the elements in the Universe.The contributions, written by outstanding professors from prestigious research centers over the world, provide the reader with both comprehensive reviews and the most recent results in the field. Large experimental facilities are discussed together with future research projects. The book offers insights into how experiments in terrestrial nuclear physics laboratories may be combined with observations in outer space to enlarge our basic knowledge.
The Asia-Pacific Conferences on Few-Body Problems in Physics tackle cover the various aspects of few-body systems in physics, with high caliber contributions from internationally renowned researchers. Readers will gain a clear picture of the latest developments in the field in both the theoretical and experimental sectors. The scope of these proceedings covers research in the following areas: three-body forces and few-nucleon dynamics, hadron structure and QCD; exotic hadrons and atoms; effective field theory in few-body physics; electromagnetic and weak processes in few-body systems; few-body dynamics in atoms, molecules, BoseOCoEinstein condensates and quantum dots; few-body approaches to unstable nuclei, nuclear astrophysics and nuclear clustering aspects; and hypernuclear physics."
Few-body physics covers a rich and wide variety of phenomena, ranging from the very lowest energy scales of atomic and molecular physics to high-energy particle physics. The papers contained in the present volume provide an apercu of recent progress in the field from both the theoretical and experimental perspectives and are based on work presented at the “22nd International Conference on Few-Body Problems in Physics”. This book is geared towards academics and graduate students involved in the study of systems which present few-body characteristics and those interested in the related mathematical and computational techniques.
CHEP (Computing in High Energy Physics) is the largest international meeting of the communities of High Energy Physics, Computing Science and the Computing Industry. The sixth conference in this series was held in Rio de Janeiro, Brazil in September 1995. The focus of the conference was “Computing for the next Millennium”. High Energy Physics is at a point where major changes in the way data acquisition and computing problems are addressed will be called for in the high energy physics programs of the year 2000 and beyond. The conference covered a wide spectrum of topics including Data Access, Storage, and Analysis; Data Acquisition and Triggering; Worldwide Collaboration and Networking; Tools, Languages, and Software Development Environments; and special purpose processing systems.The papers presented both recent progress and radical approaches to computing problems as candidates for the basis of future computing in the field of high energy physics.
Quantum Optics is a rapidly progressing field well suited to probe the many fundamental issues raised by the subtleties of quantum physics. This book consists of a collection of reviews and papers that highlight the most important challenges faced in this area of research, including topics such as cavity QED, quantum entanglement, decoherence, matter waves and nonlinear optics. It will be a source of reference for all those who wish to familiarize themselves with the latest developments in the field.
This book contains selected papers of NSC08, the 2nd Conference on Nonlinear Science and Complexity, held 28-31 July, 2008, Porto, Portugal. It focuses on fundamental theories and principles, analytical and symbolic approaches, computational techniques in nonlinear physics and mathematics. Topics treated include • Chaotic Dynamics and Transport in Classic and Quantum Systems • Complexity and Nonlinearity in Molecular Dynamics and Nano-Science • Complexity and Fractals in Nonlinear Biological Physics and Social Systems • Lie Group Analysis and Applications in Nonlinear Science • Nonlinear Hydrodynamics and Turbulence • Bifurcation and Stability in Nonlinear Dynamic Systems • Nonlinear Oscillations and Control with Applications • Celestial Physics and Deep Space Exploration • Nonlinear Mechanics and Nonlinear Structural Dynamics • Non-smooth Systems and Hybrid Systems • Fractional dynamical systems
The 20-year-old problem of the confinement and the resulting spectrum of the bound states is central to quantum chromodynamics (QCD). Many approaches have been tried starting from different points of view: the potential theory, the Bethe-Salpeter equation, string and flux tube models, bag models, vacuum structure, current algebra, lattice theory, and numerical simulations. Phenomenological assumptions and first-principle theoretical results or indications have been combined. Many partial successes have been attained, but a unified and comprehensive treatment is still lacking.In recent years, new attention has been given to the problem, both in terms of theoretical developments and for the purpose of evaluating the spectrum and other properties of the particles. In particular, attention has been focussed on areas like numerical simulations, the derivation of the potential, the use of the Bethe-Salpeter equation, the connection between the potential and the chiral symmetry approach.This workshop was an opportunity for a synthesis and a comparison of the different points of view.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
This monograph presents fundamental aspects of modern spectral and other computational methods, which are not generally taught in traditional courses. It emphasizes concepts as errors, convergence, stability, order and efficiency applied to the solution of physical problems. The spectral methods consist in expanding the function to be calculated into a set of appropriate basis functions (generally orthogonal polynomials) and the respective expansion coefficients are obtained via collocation equations. The main advantage of these methods is that they simultaneously take into account all available information, rather only the information available at a limited number of mesh points. They requi...