You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides the first graduate-level, self-contained introduction to recent developments that lead to the formulation of the configuration-interaction approach for open quantum systems, the Gamow shell model, which provides a unitary description of quantum many-body system in different regimes of binding, and enables the unification in the description of nuclear structure and reactions. The Gamow shell model extends and generalizes the phenomenologically successful nuclear shell model to the domain of weakly-bound near-threshold states and resonances, offering a systematic tool to understand and categorize data on nuclear spectra, moments, collective excitations, particle and electrom...
This introductory level text addresses the broad range of nonequilibrium phenomena observed at short time scales. It focuses on the important questions of correlations and memory effects in dense interacting systems. Experiments on very short time scales are characterized, in particular, by strong correlations far from equilibrium, by nonlinear dynamics, and by the related phenomena of turbulence and chaos. The impressive successes of experiments using pulsed lasers to study the properties of matter and of the new methods of analysis of the early phases of heavy ion reactions have necessitated a review of the available many-body theoretical methods. The aim of this book is thus to provide an introduction to the experimental and theoretical methods that help us to understand the behaviour of such systems when disturbed on very short time scales.
The main purpose of this book is to present, in a comprehensive and progressive way, the appearance of universal limit probability laws in physics, and their connection with the recently developed scaling theory of fluctuations. Arising from the probability theory and renormalization group methods, this novel approach has been proved recently to provide efficient investigative tools for the collective features that occur in any finite system.The mathematical background is self-contained and is formulated in terms which are easy to apply to the physical context. After illustrating the problem of anomalous diffusion, the book reviews recent advances in nuclear and high energy physics, where the limit laws are now recognized as being able to classify different phases of a system undergoing the pseudo-critical behaviour. A new description of the hadronic matter in terms of the fluctuation scaling is appearing as a consequence of this approach.
This understandable and inspiring book brings together both theorists and experimentalists working on the properties of nuclear and hadronic matter produced in heavy-ion collisions in various energy ranges. The main focus is on experimental signals revealing the possible phase changes of the matter.
Ladies and Gentlemen, dear colleagues, Welcome in Bodrum to the NASion Hot and Dense Nuclear Matter! Welcome also to Mrs. Governor Dr. Lale AYTAMAN. We are very honored, that you, Governor of the Mugla-State, came here to greet us. We are particularly grateful to you that you offered help and assured us to do everything that we can enjoy two safe weeks in Bodrum, in this wonderful area of your country. I have chosen Bodrum as the place for our NASI because I like this historic region where many cultures meet (e. g. , Oriental and European (Greek, Roman) culture) and where you find numerous places which played a role in ancient science and in early Christianity- I mention Milet (Thales) and E...
Powerful new techniques, including heavy ion and exotic beams, are pushing the frontiers of nuclear physics and opening up a wealth of new fields of research. After introductory chapters on theoretical and experimental aspects of nuclear collisions and beams, ``Exotic Nuclear Physics'' offers articles by experienced lecturers on forefront topics in nuclear physics, such as the conquest of the neutron and the proton drip-lines, nuclear astrophysics, the equation of state of hypernuclear matter, nuclear supersymmetry and chaotic motion in nuclei. This volume continues the successful tradition of published lecture notes from the Hispalensis International Summer School. It will benefit graduate students and lecturers in search of advanced material for self-study and courses as will as researchers in search of a modern and comprehensive source of reference.
This book summarizes the recent development of nuclear science as an important part of mesoscopic physics, the intermediate world between the macroscopic and microscopic. This fast developing area with many practical applications includes complex atoms, molecules (including biological), nuclei, small-scale solid state systems, and future quantum computers. The complexity of the problem appears due to the richness of problems, from the necessity to study individual quantum levels, to the fundamental features of statistics and thermodynamics.
This volume discusses the exciting physics with new accelerator facilities, which are being constructed or proposed in various places. The facilities are RHIC (Brookhaven), CEBAF (TJINP), SPring-8 (Nishi-Harima), RIBF (RIKEN), JHP (KEK-INS), RIB (MSU), LISS (IUCF) and COSY (Juelich). RHIC aims at the creation of a QCD deconfinement phase and the study of the properties of such matter. CEBAF and SPring-8 use leptons to probe the quark-gluon structures of hadrons and nuclei. LISS and COSY use high resolution hadron beams to study hadron structures. JHP produces strong secondary hadron beams for hyper-nuclear physics and rare decay studies of basic symmetries. RIBF and RIB produce radioactive nuclear beams for the study of the nuclear structure of unstable nuclei far from beta stability, and astrophysics issues.
The proceedings focuses on the recent developments in the physics of unstable nuclei. The topics include: masses and radii of exotic nuclei, structure and decay of unstable nuclei, neutron-halo and excitations of neutron drip-line nuclei, new aspects of reaction dynamics induced by exotic nuclear projectiles, production and reactions of radioactive nuclear beams, and synthesis of superheavy elements.