You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Physical Acoustics: Principles and Methods, Volume XIV is a five-chapter text that covers significant studies on acoustic microscopy, sound propagation in liquid crystals, ultrasonic transducers, and ultrasonic flowmeters. The opening chapter discusses techniques of acoustic microscopy, aberration and resolution performance, acoustic lens transfer functions, antireflection coatings, and both transmission and reflection acoustic microscopy. The following chapter deals with the applications to the states called liquid crystals or anisotropic liquids, states in which the material flows but yet has a long-range order that makes it macroscopically anisotropic. The third chapter focuses on the pri...
While research on ultrasonics has been covered in earlier volumes of the Physical Acoustics series, Volumes 23 and 24 demonstrate the successful commercialization of devices and instruments arising from research in this area. These volumes will assist in the process of bringing research output into the marketplace to the benefit of customers.The chapters are liberally illustrated with pictures of actual commercial objects which have been or are in use. Included are Medical Ultrasonic Diagnostics, Nondestructive Testing (NDT), Acoustic Emission, Process Control, Surface Acoustic Wave (SAW) Devices, Frequency Control Devices, Research Instruments, Transducers, and Ultrasonic Microscopes. Also contained in the text are six essays covering technology transfer and commercialization.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
None
Engineers, scientists, and technologists will find here, for the first time, a clear and comprehensive account of applications of ultrasonics in the field of process control. Using numerous examples of high-volume, low-cost applications, the author illustrates how the use of new transducer materials and designs, combined with microprocessor-based electronics, make technical and financial sense for concepts that only a few years ago might have been of interest only to academicians. Some of the important topics covered include coupling, acoustic isolation, transducer and sensor design, and signal detection in the presence of noise.