You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This rigorous yet accessible textbook provides broad and systematic coverage of linear multivariable control systems, including several new approaches to design. In addition to standard state space theory, it provides a new measurement-based approach to linear systems, including a generalization of Thevenin's Theorem, a new single-input single-output approach to multivariable control, and analytical design of PID controllers developed by the authors. Each result is rigorously proved and combined with specific control systems applications, such as the servomechanism problem, the fragility of high order controllers, multivariable control, and PID controllers. Illustrative examples solved using MATLAB and SIMULINK, with easily reusable programming scripts, are included throughout. Numerous end-of-chapter homework problems enhance understanding. Based on course-tested material, this textbook is ideal for a single or two-semester graduate course on linear multivariable control systems in aerospace, chemical, electrical and mechanical engineering.
This book is a collection of 34 papers presented by leading researchers at the International Workshop on Robust Control held in San Antonio, Texas in March 1991. The common theme tying these papers together is the analysis, synthesis, and design of control systems subject to various uncertainties. The papers describe the latest results in parametric understanding, H8 uncertainty, l1 optical control, and Quantitative Feedback Theory (QFT). The book is the first to bring together all the diverse points of view addressing the robust control problem and should strongly influence development in the robust control field for years to come. For this reason, control theorists, engineers, and applied mathematicians should consider it a crucial acquisition for their libraries.
Successfully classroom-tested at the graduate level, Linear Control Theory: Structure, Robustness, and Optimization covers three major areas of control engineering (PID control, robust control, and optimal control). It provides balanced coverage of elegant mathematical theory and useful engineering-oriented results. The first part of the book develops results relating to the design of PID and first-order controllers for continuous and discrete-time linear systems with possible delays. The second section deals with the robust stability and performance of systems under parametric and unstructured uncertainty. This section describes several elegant and sharp results, such as Kharitonov’s theo...
Significant progress has been made on nonlinear control systems in the past two decades. However, many of the existing nonlinear control methods cannot be readily used to cope with communication and networking issues without nontrivial modifications. For example, small quantization errors may cause the performance of a "well-designed" nonlinear control system to deteriorate. Motivated by the need for new tools to solve complex problems resulting from smart power grids, biological processes, distributed computing networks, transportation networks, robotic systems, and other cutting-edge control applications, Nonlinear Control of Dynamic Networks tackles newly arising theoretical and real-worl...
Written by leading researchers, this book collects a number of articles considering the problems of finite-precision computing in digital controllers and filters. Topics range from analysis of fragility and finite-precision effects to the design of low-complexity digital controllers.
This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference “Optimization and Its Applications in Control and Data Science” dedicated to Professor Boris T. Polyak, which was held in Moscow, Russia on May 13-15, 2015. This book reflects developments in theory and applications rooted by Professor Polyak’s fundamental contributions to constrained and unconstrained optimization, differentiable and nonsmooth functions, control theory and approximation. Each paper focuses on techniques for solving complex optimization problems in different application areas and recent developments in op...
Micro/nano-scale engineering—especially the design and implementation of ultra-fast and ultra-scale energy devices, sensors, and cellular and molecular systems—remains a daunting challenge. Modeling and control has played an essential role in many technological breakthroughs throughout the course of history. Therefore, the need for a practical guide to modeling and control for micro/nano-scale devices and systems has emerged. The first edited volume to address this rapidly growing field, Modeling and Control for Micro/Nano Devices and Systems gives control engineers, lab managers, high-tech researchers, and graduate students easy access to the expert contributors’ cutting-edge knowledg...
Distributed controller design is generally a challenging task, especially for multi-agent systems with complex dynamics, due to the interconnected effect of the agent dynamics, the interaction graph among agents, and the cooperative control laws. Cooperative Control of Multi-Agent Systems: A Consensus Region Approach offers a systematic framework for designing distributed controllers for multi-agent systems with general linear agent dynamics, linear agent dynamics with uncertainties, and Lipschitz nonlinear agent dynamics. Beginning with an introduction to cooperative control and graph theory, this monograph: Explores the consensus control problem for continuous-time and discrete-time linear...
Establishing adaptive control as an alternative framework to design and analyze Internet congestion controllers, End-to-End Adaptive Congestion Control in TCP/IP Networks employs a rigorously mathematical approach coupled with a lucid writing style to provide extensive background and introductory material on dynamic systems stability and neural network approximation; alongside future internet requests for congestion control architectures. Designed to operate under extreme heterogeneous, dynamic, and time-varying network conditions, the developed controllers must also handle network modeling structural uncertainties and uncontrolled traffic flows acting as external perturbations. The book als...