You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Any data analytics solution requires data population and preparation. With the rise of data analytics solutions these years, the need for this data preparation becomes even more essential. Power BI is a helpful data analytics tool that is used worldwide by many users. As a Power BI (or Microsoft BI) developer, it is essential to learn how to prepare the data in the right shape and format needed. You need to learn how to clean the data and build it in the structure that can be modeled easily and used high performant for visualization. Data preparation and transformation is the backend work. If you consider building a BI system as going to a restaurant and ordering food. The visualization is t...
Know how to do machine learning with Microsoft technologies. This book teaches you to do predictive, descriptive, and prescriptive analyses with Microsoft Power BI, Azure Data Lake, SQL Server, Stream Analytics, Azure Databricks, HD Insight, and more. The ability to analyze massive amounts of real-time data and predict future behavior of an organization is critical to its long-term success. Data science, and more specifically machine learning (ML), is today’s game changer and should be a key building block in every company’s strategy. Managing a machine learning process from business understanding, data acquisition and cleaning, modeling, and deployment in each tool is a valuable skill s...
Any data analytics solution requires data population and preparation. With the rise of data analytics solutions these years, the need for this data preparation becomes even more essential. Power BI is a helpful data analytics tool that is used worldwide by many users. As a Power BI (or Microsoft BI) developer, it is essential to learn how to prepare the data in the right shape and format needed. You need to learn how to clean the data and build it in a structure that can be modeled easily and used high performant for visualization. Data preparation and transformation is the backend work. If you consider building a BI system as going to a restaurant and ordering food. The visualization is the...
The two-volume set LNAI 8397 and LNAI 8398 constitutes the refereed proceedings of the 6th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2014, held in Bangkok, Thailand, in April 2014. The 125 revised papers presented were carefully reviewed and selected from 300 submissions. The papers address the following topics: natural language and text processing, intelligent information retrieval, semantic Web, social networks and recommendation systems, intelligent database systems, decision support systems, computer vision techniques, and machine learning and data mining. The papers are organized in topical sections on multiple model approach to machine learning, MMAML 201...
Architect and deploy a Power BI solution. This book will help you understand the many available options and choose the best combination for hosting, developing, sharing, and deploying a Power BI solution within your organization. Pro Power BI Architecture provides detailed examples and explains the different methods available for sharing and securing Power BI content so that only intended recipients can see it. Commonly encountered problems you will learn to handle include content unexpectedly changing while users are in the process of creating reports and building analysis, methods of sharing analyses that don’t cover all the requirements of your business or organization, and inconsistent...
DAX is the language of data analysis in Microsoft Power BI, Azure Analysis Services, and Excel Power Pivot. DAX is a powerful language that can quickly empower you to analyze year-over-year or rolling 12 months calculations. It is rare to find an analytics solution using Microsoft technologies (especially Power BI) that doesn’t require some calculations to be written by DAX. As a Power BI (or Microsoft BI) developer, it is essential to learn this language and master it. Learning a language is not just learning the structure and functions. It is learning how, where, and when to use it so that you can solve real-world problems with it. In my training and consulting experience on Power BI, I ...
The presentations of theinvitedspeakersandauthorsmainlyfocusedondevelopingandstudyingnew methods to cope with the problems posed by real-life applications of arti?cial intelligence.Paperspresentedinthetwentythirdconferenceintheseriescovered theories as well as applications of intelligent systems in solving complex real-life problems. We received 297 papers for the main track, selecting 119 of them with the highest quality standards. Each paper was revised by at least three members of the Program Committee.
The categorisation of analytical projects could help to simplify complexity reasonably and, at the same time, clarify the critical aspects of analytical initiatives. But how can this complex work be categorized? What makes it so complex? Data Analytics Initiatives: Managing Analytics for Success emphasizes that each analytics project is different. At the same time, analytics projects have many common aspects, and these features make them unique compared to other projects. Describing these commonalities helps to develop a conceptual understanding of analytical work. However, features specific to each initiative affects the entire analytics project lifecycle. Neglecting them by trying to use g...
Perform more advanced analysis and manipulation of your data beyond what Power BI can do to unlock valuable insights using Python and R Key FeaturesGet the most out of Python and R with Power BI by implementing non-trivial codeLeverage the toolset of Python and R chunks to inject scripts into your Power BI dashboardsImplement new techniques for ingesting, enriching, and visualizing data with Python and R in Power BIBook Description Python and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical...
Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.