You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.
As we delve more deeply into the physics and chemistry of functional materials and processes, we are inexorably driven to the nanoscale. And nowhere is the development of instrumentation and associated techniques more important to scientific progress than in the area of nanoscience. The dramatic expansion of efforts to peer into nanoscale materials and processes has made it critical to capture and summarize the cutting-edge instrumentation and techniques that have become indispensable for scientific investigation in this arena. This Handbook is a key resource developed for scientists, engineers and advanced graduate students in which eminent scientists present the forefront of instrumentation and techniques for the study of structural, optical and electronic properties of semiconductor nanostructures.
The book contains impressive results obtained in the XX-th century and discussion of next challenges of the XXI-st century in understanding of the nanoworld. The main sections of the book are: (1) Physics of Nanostructures, (2) Chemistry of Nanostructures, (3) Nanotechnology, (4) nanostructure Based Devices. Contents: Physics of Nanostructures: Polarons in Quantum Wells (A I Bibik et al.); Screening of Extra Point Charge in a Few Particle Coulomb System (N A Poklonski et al.); Electric Field Effect on Absorption Spectra of an Ensemble of Close-Packed CdSe Nanocrystals (L I Gurinovich et al.); Influence of Surface Phases on Electrical Conductivity of Silicon Surface (D A Tsukanov et al.); Che...
Experimental advances in helium atom scattering spectroscopy over the last forty years have allowed the measurement of surface phonon dispersion curves of more than 200 different crystal surfaces and overlayers of insulators, semiconductors and metals. The first part of the book presents, at a tutorial level, the fundamental concepts and methods in surface lattice dynamics, and the theory of atom-surface interaction and inelastic scattering in their various approximations, up to the recent electron-phonon theory of helium atom scattering from conducting surfaces. The second part of the book, after introducing the experimentalist to He-atom spectrometers and the rich phenomenology of helium a...
The book contains impressive results obtained in the XX-th century and discussion of next challenges of the XXI-st century in understanding of the nanoworld. The main sections of the book are: (1) Physics of Nanostructures, (2) Chemistry of Nanostructures, (3) Nanotechnology, (4) nanostructure Based Devices.
The development of solid state devices began a little more than a century ago, with the discovery of the electrical conductivity of ionic solids. Today, solid state technologies form the background of the society in which we live. The aim of this book is threefold: to present the background physical chemistry on which the technology of semiconductor devices is based; secondly, to describe specific issues such as the role of defects on the properties of solids, and the crucial influence of surface properties; and ultimately, to look at the physics and chemistry of semiconductor growth processes, both at the bulk and thin-film level, together with some issues relating to the properties of nano...
This book brings together detailed discussions by leading experts on the various innovative aspects of thin films growth, deposition and characterization techniques, and new thin film materials and devices. It addresses through the different viewpoints of the contributors, the major problem of thin films science - the relation between the energy of the condensing species and the resulting properties of the films. Some of the issues considered include energetic condensation, bombardment stabilization, pulsed electron beam ablation, orientation and self-organization of organic, ferroelectric and nanoparticle thin films. Several chapters focus on applications such as the recent developments in organic optoelectronics, large area electronic technology and superconducting thin film devices.
This book is a printed edition of the Special Issue "Crystal Dislocations: Their Impact on Physical Properties of Crystals" that was published in Crystals