You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Unlike other books on the modeling and analysis of experimental data, Design and Analysis of Experiments: Classical and Regression Approaches with SAS not only covers classical experimental design theory, it also explores regression approaches. Capitalizing on the availability of cutting-edge software, the author uses both manual meth
Virtually any random process developing chronologically can be viewed as a time series. In economics, closing prices of stocks, the cost of money, the jobless rate, and retail sales are just a few examples of many. Developed from course notes and extensively classroom-tested, Applied Time Series Analysis includes examples across a variety of fields, develops theory, and provides software to address time series problems in a broad spectrum of fields. The authors organize the information in such a format that graduate students in applied science, statistics, and economics can satisfactorily navigate their way through the book while maintaining mathematical rigor. One of the unique features of ...
Since the emerging discipline of engineering enterprise systems extends traditional systems engineering to develop webs of systems and systems-of-systems, the engineering management and management science communities need new approaches for analyzing and managing risk in engineering enterprise systems. Advanced Risk Analysis in Engineering Enterpri
For surveys involving sensitive questions, randomized response techniques (RRTs) and other indirect questions are helpful in obtaining survey responses while maintaining the privacy of the respondents. Written by one of the leading experts in the world on RR, Randomized Response and Indirect Questioning Techniques in Surveys describes the current s
A Cohesive Approach to Regression Models Confidence Intervals in Generalized Regression Models introduces a unified representation-the generalized regression model (GRM)-of various types of regression models. It also uses a likelihood-based approach for performing statistical inference from statistical evidence consisting of data a
Handbook of Empirical Economics and Finance explores the latest developments in the analysis and modeling of economic and financial data. Well-recognized econometric experts discuss the rapidly growing research in economics and finance and offer insight on the future direction of these fields. Focusing on micro models, the first group of chapters describes the statistical issues involved in the analysis of econometric models with cross-sectional data often arising in microeconomics. The book then illustrates time series models that are extensively used in empirical macroeconomics and finance. The last set of chapters explores the types of panel data and spatial models that are becoming increasingly significant in analyzing complex economic behavior and policy evaluations. This handbook brings together both background material and new methodological and applied results that are extremely important to the current and future frontiers in empirical economics and finance. It emphasizes inferential issues that transpire in the analysis of cross-sectional, time series, and panel data-based empirical models in economics, finance, and related disciplines.
"Thoroughly revised and updated, the second edition of Intuitive Biostatistics retains and refines the core perspectives of the previous edition: a focus on how to interpret statistical results rather than on how to analyze data, minimal use of equations, and a detailed review of assumptions and common mistakes. Intuitive Biostatistics, Completely Revised Second Edition, provides a clear introduction to statistics for undergraduate and graduate students and also serves as a statistics refresher for working scientists. New to this edition: Chapter 1 shows how our intuitions lead us to misinterpret data, thus explaining the need for statistical rigor. Chapter 11 explains the lognormal distribu...
A Text on the Foundation Processes, Analytical Principles, and Implementation Practices of Engineering Risk Management Drawing from the author's many years of hands-on experience in the field, Analytical Methods for Risk Management: A Systems Engineering Perspectivepresents the foundation processes and analytical practices
State-of-the-Art Coverage of the Most Widely Used Acceptance Sampling Techniques Cohesively Incorporates Theory and Practice Reflecting the recent resurgence of interest in this field, Acceptance Sampling in Quality Control, Second Edition presents the state of the art in the methodology of sampling and explores its advantages and limitations. The book also looks at how acceptance control can support applications of statistical process control and help in the evaluation of products. New to the Second Edition Coverage of ISO 2859 and 3951 standards and the ASTM version (E2234) of MIL-STD-105E A new section on credit-based sampling plans Greater emphasis on sampling schemes with switching rule...
Through clear, step-by-step mathematical calculations, Applied Statistical Inference with MINITAB enables students to gain a solid understanding of how to apply statistical techniques using a statistical software program. It focuses on the concepts of confidence intervals, hypothesis testing, validating model assumptions, and power analysis.Illustr