You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Photonics is a key technology of this century. The combination of photonics and silicon technology is of great importance because of the potentiality of coupling electronics and optical functions on a single chip. Many experimental and theoretical studies have been performed to understand and design the photonic properties of silicon nanocrystals. Generation of light in silicon is a challenging perspective in the field; however, the issue of light-emitting devices does not limit the activity in the field. Research is also focused on light modulators, optical waveguides and interconnectors, optical amplifiers, detectors, memory elements, photonic crystals, etc. A particularly important task o...
Tunneling reactions in chemistry are characterized by the low-temperature limit when the classical contribution is negligible. Many practical applications benefit from the lack of heat and have a deep physical basis. Interesting advantages of chemical synthesis at low temperatures have also been demonstrated. This book covers fundamental and practical aspects of the processes and experimental and theoretical methods used in the field. The chapters are written by leading scientists who have very strong experience in the selected topics, and many practical recommendations can be found in this book.
Photonics is a key technology of this century. The combination of photonics and silicon technology is of great importance because of the potentiality of coupling electronics and optical functions on a single chip. Many experimental and theoretical studies have been performed to understand and design the photonic properties of silicon nanocrystals. Generation of light in silicon is a challenging perspective in the field; however, the issue of light-emitting devices does not limit the activity in the field. Research is also focused on light modulators, optical waveguides and interconnectors, optical amplifiers, detectors, memory elements, photonic crystals, etc. A particularly important task o...
Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.
Drawing on the continued wealth of photochemical research, this volume combines reviews on the latest advances in the field with specific topical highlights. Starting with periodical reports of the recent literature on physical and inorganic aspects, light induced reactions in cryogenic matrices, properties of transition-metal compounds, time-resolved spectroscopy, the exploitation of solar energy and the molecules of colour. Coverage continues with highlighted topics, in the second part, from photoresponsive hydrogels, the tunable photoredox properties of organic dyes, light-driven asymmetric organocatalytic processes, dual gold–photoredox catalysis, the preparation and characterization o...
Nanoscale materials are showing great promise in various optoelectronics applications, especially the fast-developing fields of optical communication and optical computers. With silicon as the leading material for microelectronics, the integration of optical functions into silicon technology is a very important challenge. This book concentrates on the optoelectronic properties of silicon nanocrystals, associated phenomena and related topics, from basic principles to the most recent discoveries. The areas of focus include silicon-based light-emitting devices, light modulators, optical wavevguides and interconnectors, optical amplifiers and memory elements. The book comprises theoretical and experimental analyses of various properties of silicon nanocrystals, research methods and preparation techniques, and some promising applications.
Silicon, the leading material in microelectronics during the last four decades, also promises to be the key material in the future. Despite many claims that silicon technology has reached fundamental limits, the performance of silicon microelectronics continues to improve steadily. The same holds for almost all the applications for which Si was considered to be unsuitable. The main exception to this positive trend is the silicon laser, which has not been demonstrated to date. The main reason for this comes from a fundamental limitation related to the indirect nature of the Si band-gap. In the recent past, many different approaches have been taken to achieve this goal: dislocated silicon, extremely pure silicon, silicon nanocrystals, porous silicon, Er doped Si-Ge, SiGe alloys and multiquantum wells, SiGe quantum dots, SiGe quantum cascade structures, shallow impurity centers in silicon and Er doped silicon. All of these are abundantly illustrated in the present book.
None
None
Presents a history of chemistry, providing definitions and explanations of related topics, plus brief biographies of scientists of the 20th century.