You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"Papers presented to J.E. Littlewood on his 80th birthday" issued as 3d ser., v. 14 A, 1965.
This set of notes, for graduate students who are specializing in algebraic topology, adopts a novel approach to the teaching of the subject. It begins with a survey of the most beneficial areas for study, with recommendations regarding the best written accounts of each topic. Because a number of the sources are rather inaccessible to students, the second part of the book comprises a collection of some of these classic expositions, from journals, lecture notes, theses and conference proceedings. They are connected by short explanatory passages written by Professor Adams, whose own contributions to this branch of mathematics are represented in the reprinted articles.
An up-to-date and self-contained introduction based on a graduate course taught at the University of Paris.
The definitive account of the recent computer solution of the oldest problem in discrete geometry.
Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the c...
This 1985 book is an introduction to certain central ideas in group theory and geometry. Professor Lyndon emphasises and exploits the well-known connections between the two subjects and leads the reader to the frontiers of current research at the time of publication.
Introduction to homological mirror symmetry from the point of view of representation theory, suitable for graduate students.