You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a comprehensive collection of state-of-the-art studies of seafloor slope instability and their societal implications. The volume captures the most recent and exciting scientific progress made in this research field. As the world’s climate and energy needs change, the conditions under which slope instability occurs and needs to be considered, are also changing. The science and engineering of submarine – or more widely subaqueous – mass movements is greatly benefiting from advances in seafloor and sub-seafloor surveying technologies. Ultra-high-resolution seafloor mapping and 3D seismic reflection cubes are becoming commonly available datasets that are dramatically increasin...
Recent global events such as the devastating 1998 Papua New Guinea tsunami, the 2004 Sumatran tsunami and the 2006 SE Asia undersea network cable failure underscore the societal and economic effects of submarine mass movements. These events call upon the scientific community to understand submarine mass movement processes and consequences to assist in hazard assessment, mitigation and planning. Additionally, submarine mass movements are beginning to be recognized as prevalent in continental margin geologic sections. As such, they represent a significant if not dominant role in margin sedimentary processes. They also represent a potential hazard to hydrocarbon exploration and development, but also represent exploration indicators and targets. This volume consists of a collection of the latest scientific research by international experts in geological, geophysical, engineering and environment aspects of submarine mass failures, focussed on understanding the full spectrum of challenges presented by submarine mass movements and their consequences.
Submarine mass movements are a hidden geohazard with large destructive potential for submarine installations and coastal areas. This hazard and associated risk is growing in proportion with increasing population of coastal urban agglomerations, industrial infrastructure, and coastal tourism. Also, the intensified use of the seafloor for natural resource production, and deep sea cables constitutes an increasing risk. Submarine slides may alter the coastline and bear a high tsunamogenic potential. There is a potential link of submarine mass wasting with climate change, as submarine landslides can uncover and release large amounts greenhouse gases, mainly methane, that are now stored in marine ...
This GSL volume focuses on underwater or subaqueous landslides with the overarching goal of understanding how they affect society and the environment. The new research presented here is the result of significant advances made over recent years in directly monitoring submarine landslides, in standardising global datasets for quantitative analysis, constructing a global database, and leading international research projects. This volume demonstrates the breadth of investigation taking place into subaqueous landslides, and shows that while events like the recent ones in the Indonesian archipelago can be devastating they are at the smaller end of what the Earth has experienced in the past. Understanding the spectrum of subaqueous landslide processes, and therefore the potential societal impact, requires research across all spatial and temporal scales. This volume delivers a compilation of state-of-the-art papers covering topics from regional landslide databases to advanced techniques for in situ measurements, to numerical modelling of processes and hazards.
None
None
The Directory of Geoscience Departments 50th Edition is the most comprehensive directory and source of information about geosciences departments and researchers available. It is an invaluable resource for individuals working in the geosciences or must identify or work with specialists on the issues of Earth, Environmental, and related sciences and engineering fields. The Directory of Geoscience Departments 50th Edition provides a state/country-sorted listing of nearly 2300 geoscience departments, research departments, institutes, and their faculty and staff. Information on contact information for departments and individuals is provided, as well as details on department enrollments, faculty specialties, and the date and source of faculty and staff's highest degree. New in the 50th edition: Listing of all US and Canadian geoscience theses and dissertations accepted in 2012 that have been reported to GeoRef Information Services, as well as a listing of faculty by their research specialty.
The challenges facing submarine mass movement researchers and engineers are plentiful and exciting. This book follows several high-profile submarine landslide disasters that have reached the world’s attention over the past few years. For decades, researchers have been mapping the world’s mass movements. Their significant impacts on the Earth by distributing sediment on phenomenal scales is undeniable. Their importance in the origins of buried resources has long been understood. Their hazard potential ranges from damaging to apocalyptic, frequently damaging local infrastructure and sometimes devastating whole coastlines. Moving beyond mapping advances, the subaqueous mass movement scientists and practitioners are now also focussed on assessing the consequences of mass movements, and the measurement and modelling of events, hazard analysis and mitigation. Many state-of-the-art examples are provided in this book, which is produced under the auspices of the United Nations Educational, Scientific and Cultural Organisation Program S4SLIDE (Significance of Modern and Ancient Submarine Slope LandSLIDEs).
Submarine mass movements represent major offshore geohazards due to their destructive and tsunami-generation potential. This potential poses a threat to human life as well as to coastal, nearshore and offshore engineering structures. Recent examples of catastrophic submarine landslide events that affected human populations (including tsunamis) are numerous; e.g., Nice airport in 1979, Papua-New Guinea in 1998, Stromboli in 2002, Finneidfjord in 1996, and the 2006 and 2009 failures in the submarine cable network around Taiwan. The Great East Japan Earthquake in March 2011 also generated submarine landslides that may have amplified effects of the devastating tsunami. Given that 30% of the Worl...