You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume offers a collection of non-trivial, unconventional problems that require deep insight and imagination to solve. They cover many topics, including number theory, algebra, combinatorics, geometry and analysis. The problems start as simple exercises and become more difficult as the reader progresses through the book to become challenging enough even for the experienced problem solver. The introductory problems focus on the basic methods and tools while the advanced problems aim to develop problem solving techniques and intuition as well as promote further research in the area. Solutions are included for each problem.
"The book has two main parts. The first is devoted to the Poincare conjecture, characterizations of PL-manifolds, covering quadratic forms of links and to categories in low dimensional topology that appear in connection with conformal and quantum field theory.
Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.
The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that "in learning the sciences examples are of more use than precepts". We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a "global and analytica...
This volume is based on talks given at the Conference in Honor of the 60th Anniversary of Alberto Verjovsky, a prominent mathematician in Latin America who made significant contributions to dynamical systems, geometry, and topology. Articles in the book present recent work in these areas and are suitable for graduate students and research mathematicians.
A compendium of over 5,000 problems with subject, keyword, author and citation indexes.
Focussing on the mathematics related to the recent proof of ergodicity of the (Weil–Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research. It offers original textbook-level material suitable for introductory or advanced courses as well as deep insights into the state of the art of the field, making it useful as a reference and for self-study. The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmüller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.
Recent success with the four-dimensional Poincaré conjecture has revived interest in low-dimensional topology, especially the three-dimensional Poincaré conjecture and other aspects of the problems of classifying three-dimensional manifolds. These problems have a driving force, and have generated a great body of research, as well as insight.The main topics treated in this book include a paper by V Poenaru on the Poincaré conjecture and its ramifications, giving an insight into the herculean work of the author on the subject. Steve Armentrout's paper on “Bing's dogbone space” belongs to the topics in three-dimensional topology motivated by the Poincaré conjecture. S Singh gives a nice synthesis of Armentrout's work. Also included in the volume are shorter original papers, dealing with somewhat different aspects of geometry, and dedicated to Armentrout by his colleagues — Augustin Banyaga (and Jean-Pierre Ezin), David Hurtubise, Hossein Movahedi-Lankarani and Robert Wells.
The subject of this handbook is Teichmuller theory in a wide sense, namely the theory of geometric structures on surfaces and their moduli spaces. This includes the study of vector bundles on these moduli spaces, the study of mapping class groups, the relation with $3$-manifolds, the relation with symmetric spaces and arithmetic groups, the representation theory of fundamental groups, and applications to physics. Thus the handbook is a place where several fields of mathematics interact: Riemann surfaces, hyperbolic geometry, partial differential equations, several complex variables, algebraic geometry, algebraic topology, combinatorial topology, low-dimensional topology, theoretical physics,...
The present book covers a wide-range of issues from alternative hadron models to their likely implications to New Energy research, including alternative interpretation of low-energy reaction (coldfusion) phenomena.The authors explored some new approaches to describe novel phenomena in particle physics. M Pitkanen introduces his nuclear string hypothesis derived from his Topological Geometrodynamics theory, while E. Goldfain discusses a number of nonlinear dynamics methods, including bifurcation, pattern formation (complex Ginzburg-Landau equation) to describe elementary particle masses. Fu Yuhua discusses a plausible method for prediction of phenomena related to New Energy development.F. Sma...