You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the proceedings of the 9th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2023, which took place in Santa Margherita di Pula, Italy, in May 2023. The 57 papers presented in this volume were carefully reviewed and selected from 72 submissions. They were organized in topical sections as follows: Inverse Problems in Imaging; Machine and Deep Learning in Imaging; Optimization for Imaging: Theory and Methods; Scale Space, PDEs, Flow, Motion and Registration.
This book is a collection of thoroughly refereed papers presented at the 26th IFIP TC 7 Conference on System Modeling and Optimization, held in Klagenfurt, Austria, in September 2013. The 34 revised papers were carefully selected from numerous submissions. They cover the latest progress in a wide range of topics such as optimal control of ordinary and partial differential equations, modeling and simulation, inverse problems, nonlinear, discrete, and stochastic optimization as well as industrial applications.
This book constitutes the refereed proceedings of the 8th International Conference on Image and Signal Processing, ICISP 2018, held in Cherbourg, France, in July 2018. The 58 revised full papers were carefully reviewed and selected from 122 submissions. The contributions report on the latest developments in image and signal processing, video processing, computer vision, multimedia and computer graphics, and mathematical imaging and vision.
This book constitutes the refereed proceedings of the First International Conference on Geometric Science of Information, GSI 2013, held in Paris, France, in August 2013. The nearly 100 papers presented were carefully reviewed and selected from numerous submissions and are organized into the following thematic sessions: Geometric Statistics on Manifolds and Lie Groups, Deformations in Shape Spaces, Differential Geometry in Signal Processing, Relational Metric, Discrete Metric Spaces, Computational Information Geometry, Hessian Information Geometry I and II, Computational Aspects of Information Geometry in Statistics, Optimization on Matrix Manifolds, Optimal Transport Theory, Probability on Manifolds, Divergence Geometry and Ancillarity, Entropic Geometry, Tensor-Valued Mathematical Morphology, Machine/Manifold/Topology Learning, Geometry of Audio Processing, Geometry of Inverse Problems, Algebraic/Infinite dimensional/Banach Information Manifolds, Information Geometry Manifolds, and Algorithms on Manifolds.
Extracting the latent underlying structures of complex nonlinear local and nonlocal flows is essential for their analysis and modeling. In this Element the authors attempt to provide a consistent framework through Koopman theory and its related popular discrete approximation - dynamic mode decomposition (DMD). They investigate the conditions to perform appropriate linearization, dimensionality reduction and representation of flows in a highly general setting. The essential elements of this framework are Koopman eigenfunctions (KEFs) for which existence conditions are formulated. This is done by viewing the dynamic as a curve in state-space. These conditions lay the foundations for system reconstruction, global controllability, and observability for nonlinear dynamics. They examine the limitations of DMD through the analysis of Koopman theory and propose a new mode decomposition technique based on the typical time profile of the dynamics.
This book constitutes the proceedings of the 7th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2019, held in Hofgeismar, Germany, in June/July 2019. The 44 papers included in this volume were carefully reviewed and selected for inclusion in this book. They were organized in topical sections named: 3D vision and feature analysis; inpainting, interpolation and compression; inverse problems in imaging; optimization methods in imaging; PDEs and level-set methods; registration and reconstruction; scale-space methods; segmentation and labeling; and variational methods.
In this Element, the authors consider fully discretized p-Laplacian problems (evolution, boundary value and variational problems) on graphs. The motivation of nonlocal continuum limits comes from the quest of understanding collective dynamics in large ensembles of interacting particles, which is a fundamental problem in nonlinear science, with applications ranging from biology to physics, chemistry and computer science. Using the theory of graphons, the authors give a unified treatment of all the above problems and establish the continuum limit for each of them together with non-asymptotic convergence rates. They also describe an algorithmic framework based proximal splitting to solve these discrete problems on graphs.
This book gathers full papers presented at the VipIMAGE 2019—VII ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing—held on October 16-18, 2019, in Porto, Portugal. It discusses cutting-edge methods, findings, and applications related to 3D vision, bio- and medical imaging, computer-aided diagnosis, image enhancement, image processing and analysis, virtual reality, and also describes in detail advanced image analysis techniques, such as image segmentation and feature selection, as well as statistical and geometrical modeling. The book provides both researchers and professionals with extensive and timely insights into advanced imaging techniques for various application purposes.
With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control. Contents: Part I Second-order decomposition model for image processing: numerical experimentation Optimizing spatial and tonal data for PDE-based inpainting Image registration using phase・amplitude separation Rotation invariance in exemplar-based image inpainting Convective regularization for optical flow A variational method for quantitative ph...
This book constitutes the proceedings of the 8th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2021, which took place during May 16-20, 2021. The conference was planned to take place in Cabourg, France, but changed to an online format due to the COVID-19 pandemic. The 45 papers included in this volume were carefully reviewed and selected from a total of 64 submissions. They were organized in topical sections named as follows: scale space and partial differential equations methods; flow, motion and registration; optimization theory and methods in imaging; machine learning in imaging; segmentation and labelling; restoration, reconstruction and interpolation; and inverse problems in imaging.