You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Interest in commutative algebra has surged over the past decades. In order to survey and highlight recent developments in this rapidly expanding field, the Centre de Recerca Matematica in Bellaterra organized a ten-days Summer School on Commutative Algebra in 1996. Lectures were presented by six high-level specialists, L. Avramov (Purdue), M.K. Green (UCLA), C. Huneke (Purdue), P. Schenzel (Halle), G. Valla (Genova) and W.V. Vasconcelos (Rutgers), providing a fresh and extensive account of the results, techniques and problems of some of the most active areas of research. The present volume is a synthesis of the lectures given by these authors. Research workers as well as graduate students in...
This volume contains the combined Proceedings of the Second International Meeting on Commutative Algebra and Related Areas (SIMCARA) held from July 22–26, 2019, at the Universidade de São Paulo, São Carlos, Brazil, and the AMS Special Session on Commutative Algebra, held from September 14–15, 2019, at the University of Wisconsin-Madison, Wisconsin. These two meetings celebrated the combined 150th birthday of Roger and Sylvia Wiegand. The Wiegands have been a fixture in the commutative algebra community, as well as the wider mathematical community, for over 40 years. Articles in this volume cover various areas of factorization theory, homological algebra, ideal theory, representation theory, homological rigidity, maximal Cohen-Macaulay modules, and the behavior of prime spectra under completion, as well as some topics in related fields. The volume itself bears evidence that the area of commutative algebra is a vibrant one and highlights the influence of the Wiegands on generations of researchers. It will be useful to researchers and graduate students.
This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra system supporting research in algebraic geometry, commutative algebra, and their applications. The algorithmic tools presented here are designed to serve readers wishing to bring such tools to bear on their own problems. The first part of the book covers Macaulay 2 using concrete applications; the second emphasizes details of the mathematics.
This book is a lightly edited version of the unpublished manuscript Maximal Cohen–Macaulay modules and Tate cohomology over Gorenstein rings by Ragnar-Olaf Buchweitz. The central objects of study are maximal Cohen–Macaulay modules over (not necessarily commutative) Gorenstein rings. The main result is that the stable category of maximal Cohen–Macaulay modules over a Gorenstein ring is equivalent to the stable derived category and also to the homotopy category of acyclic complexes of projective modules. This assimilates and significantly extends earlier work of Eisenbud on hypersurface singularities. There is also an extensive discussion of duality phenomena in stable derived categories, extending Tate duality on cohomology of finite groups. Another noteworthy aspect is an extension of the classical BGG correspondence to super-algebras. There are numerous examples that illustrate these ideas. The text includes a survey of developments subsequent to, and connected with, Buchweitz's manuscript.
This book describes the interaction of commutative algebra with other areas of mathematics, including algebraic geometry, group cohomology, and combinatorics.
This is an English translation of the now classic "Algbre Locale - Multiplicits" originally published by Springer as LNM 11. It gives a short account of the main theorems of commutative algebra, with emphasis on modules, homological methods and intersection multiplicities. Many modifications to the original French text have been made for this English edition, making the text easier to read, without changing its intended informal character.
The authors study higher form Proca equations on Einstein manifolds with boundary data along conformal infinity. They solve these Laplace-type boundary problems formally, and to all orders, by constructing an operator which projects arbitrary forms to solutions. They also develop a product formula for solving these asymptotic problems in general. The central tools of their approach are (i) the conformal geometry of differential forms and the associated exterior tractor calculus, and (ii) a generalised notion of scale which encodes the connection between the underlying geometry and its boundary. The latter also controls the breaking of conformal invariance in a very strict way by coupling conformally invariant equations to the scale tractor associated with the generalised scale.
A stationary solution of the rotating Navier-Stokes equations with a boundary condition is called an Ekman boundary layer. This book constructs stationary solutions of the rotating Navier-Stokes-Boussinesq equations with stratification effects in the case when the rotating axis is not necessarily perpendicular to the horizon. The author calls such stationary solutions Ekman layers. This book shows the existence of a weak solution to an Ekman perturbed system, which satisfies the strong energy inequality. Moreover, the author discusses the uniqueness of weak solutions and computes the decay rate of weak solutions with respect to time under some assumptions on the Ekman layers and the physical parameters. The author also shows that there exists a unique global-in-time strong solution of the perturbed system when the initial datum is sufficiently small. Comparing a weak solution satisfying the strong energy inequality with the strong solution implies that the weak solution is smooth with respect to time when time is sufficiently large.
This memoir attempts at a systematic study of convergence to stationary state for certain classes of degenerate diffusive equations, taking the general form ${\frac{\partial f}{\partial t}}+ L f =0$. The question is whether and how one can overcome the degeneracy by exploiting commutators.
The aim of this paper is to analyze some of the relationships between oscillation theory for linear ordinary differential equations on the real line (shortly, ODE) and the geometry of complete Riemannian manifolds. With this motivation the authors prove some new results in both directions, ranging from oscillation and nonoscillation conditions for ODE's that improve on classical criteria, to estimates in the spectral theory of some geometric differential operator on Riemannian manifolds with related topological and geometric applications. To keep their investigation basically self-contained, the authors also collect some, more or less known, material which often appears in the literature in various forms and for which they give, in some instances, new proofs according to their specific point of view.